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We work out a theory of the voltage-dependent noise in semiconductor nanowires under the condition of
non-Ohmic phonon-assisted quasiballistic transport. We assume that weak scattering of the electrons confined
within the nanowire is due to their interaction with the bulk acoustic and/or optical phonons. A general
expression for the noise is derived. It is used to consider particular cases of interest. The dependence of noise
intensity on the applied voltage is investigated. For low temperatures, a remarkable threshold effect is pre-
dicted.

I. INTRODUCTION

The purpose of the present paper is to work out a theory
of noise in nanowires under the condition of the non-Ohmic
phonon-assisted transport. We will consider the so-called
quasiballistic regime where the conduction electrons within
the nanowire either move without collisions or suffer a col-
lision with a phonon. The impurity scattering is always as-
sumed weak enough to make conductance steps clearly ob-
servable at low temperatures. We will be interested in the
contribution to the noise that is due to the discreteness of the
electron charges, depends on the applied voltageV, and van-
ishes whenV→0. To establish a continuity with the existing
terminology we will sometimes call this ‘‘shot noise.’’ Such
noise can persist down to zero temperatures. In other words,
we consider the noise caused by the interaction of the con-
duction electrons with phonons.

The non-Ohmic phonon-assisted transport in nanowires
has been recently considered both for the acoustic- and
optical-phonon scattering~see Refs. 1,2, cf. also with Ref. 3!.
There the hot-electron transport regime was investigated and
the variation of the total ballistic currentDJ in a spatially
uniform conductor that is due to the electron-phonon scatter-
ing was calculated. This variation is assumed to be suffi-
ciently small so that most of the current is still transported
ballistically. The non-Ohmic behavior is due to the fact that
the rate of electron-phonon collisions is sensitive to the form
of the electron distribution, which in a ballistic conductor
strongly depends on the applied voltage. In fact, it was im-
plied in Refs. 1 and 2 that the potential is almost constant
along the wire and its main drops are within the contacts
~one can always choose the form of gate electrodes to satisfy
this condition!.

It turns out that the backscattering of electrons determines
the phonon-controlled portion of the currentDJ. The ener-
gies exchanged with the phonon system can be much bigger
thankBT and are in such a case determined by the potential
differenceV. Only those phonons contribute to the phonon-
controlled part of the current whose quasimomenta~or rather
their projections on the directionx of the electron propaga-
tion! are large enough to reverse the quasimomenta of the
scattered electrons. At low temperature the number of such
equilibrium phonons can be exponentially small. However, if
the applied voltage is sufficiently large such phononscan be

emitted, thus greatly enhancing the phonon-controlled part of
the current. This can lead to a remarkable threshold effect for
the generation of phonons with a given energy\v provided
that eV exceeds\v. Our purpose in particular is to discuss
voltage-dependent noise under these conditions.

Recently a general relation between the shot noise spec-
tral densityP and the transmission properties of a mesos-
copic conductor has been derived for the elastic electron
scattering.4–8 If the incident channel states do not mix with
each other,4–6 this relation takes the following form:

P52euVu
e2

h(
n

Tn~12Tn!, ~1!

whereTn are the channel transmission coefficients. For the
case of an arbitrary mesoscopic conductor with mixing chan-
nels this relation was generalized by Bu¨ttiker, Ref. 7 ~see
also a paper by Martin and Landauer, Ref. 8!. It was shown
there that when the voltageV is applied to an arbitrary two-
terminal mesoscopic conductor, the zero-frequency, zero-
temperature shot noise power is given by

P52euVu
e2

h
Tr@ t̂ t̂†~12 t̂ t̂†!#, ~2!

wheret̂ is the transmission matrix of the conductor evaluated
at the Fermi energy.

These equations solve the problem in general. In order to
find the explicit expression forP for any particular mesos-
copic system one should analyze the structure of the trans-
mission matrix. For a few-channel finite-length mesoscopic
conductor even in the presence of some degree of disorder
this problem is, in principle, not difficult provided that the
transmission matrix can be found either analytically or nu-
merically. In contrast, for a many-channel conductor with
complicated internal scattering structure the explicit evalua-
tion of t̂ is a formidable task. However, as was shown by
Beenakker and Bu¨ttiker,9 in order to find shot noise power it
is enough sometimes to know onlythe statistical properties
of t̂ t̂† and (t̂ t̂†)2 eigenvalues. For the particular case of a
diffusive quasi-one-dimensional metallic conductor they
found that shot noise is partially suppressed as compared to
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the ‘‘full shot noise’’ level. The latter corresponds to the
noise of a classical tunnel junction with the same conduc-
tance. Namely, they found

P5g
2e2

h
euVuG, ~3!

where the ‘‘reduction factor’’g51/3, andG is the conduc-
tance of the sample. The same result for the shot noise power
of the diffusive metallic mesoscopic conductor was obtained
independently by Nagaev10 by making use of the the Boltz-
mann equation approach.

In general, the shot noise has been widely investigated for
mesoscopic systems with different types of electron trans-
port. However, the analysis given in most of the papers is
restricted to the situation of purelyelastic scattering5–8,11

when the ideal quantum coherence persists within a conduc-
tor. Moreover, it is generally believed@see, e.g., Refs. 9, 12,
and 13 and the comprehensive review by Landauer~Ref.
14!# that inelasticscattering destroys coherence and leads to
a suppression of the shot noise. This, however, is not always
the case. For instance, recently it was shown by Kozub and
one of the authors of the present paper15 that at least an
inelastic electron-electron scattering, even for the case where
it is so strong that it controls the form of the electron distri-
bution function, does not essentially suppress shot noise of a
diffusive conductor. In the electron-temperature approxima-
tion the zero-frequency, zero-lattice-temperature power of
shot noise was shown to be

P5
A3
2

e2

h
euVuG, ~4!

so that the reduction factor in this case isg5A3/4. Although
it differs from the result of Beenakker, Bu¨ttiker, and Nagaev
~BBN!, it does not produce a strong suppression of noise.
The obtained prefactor is universal in the same sense as the
BBN prefactor: it holds for any quasi-one-dimensional ge-
ometry without dependence on the degree of disorder.

Both Eq.~3! and Eq.~4! are valid for many-channel con-
ductors with a rather strong, namely, diffusive, elastic scat-
tering. Let us now turn to, in some sense, the opposite limit,
namely, that of a one-channel conductor. According to
Eq. ~1!, provided that only elastic processes are present
the shot noise power of such a system is
P52euVu(e2/h)T0(12T0), whereT0 is the channel trans-
mission. Shot noise is finite if and only if the transmission
coefficient is neither 0 nor 1. An ideal one-channel conduc-
tor, where the elastic scattering is absent and therefore
T051, does not produce any noise. We will show that the
inelastic scattering by phonons alters this situation. At non-
zero temperature or voltage, electrons may be scattered in the
course of phonon emission or absorption, which brings about
shot noise as well.

An appearance of shot noise in an ideal conductor due to
the inelastic electron-phonon scattering has been pointed out
for the first time, to our knowledge, by Kulik and
Omel’yanchuk16 for a classical three-dimensional~3D! bal-
listic point contact. The purpose of the present paper is to
study the effects of the electron-phonon scattering on shot
noise of quasiballistic nanowires with a strongly quantized
resistance. We will derive a formula for noise, which takes

into account the inelastic scattering by phonons. Then we
will make use of this formula to study particular cases of
interest.

II. GENERAL RESULTS

Let us consider a nanowire of a lengthL along thex axis.
In the spirit of the Landauer-Bu¨ttiker-Imry17 approach we
assume the wire to be connected with the reservoirs which
we call ‘‘left’’ ~L! and ‘‘right’’ ~R!, each of these being in
equilibrium with itself. If the wire is long enough the elec-
tron motion along thex axis ~see Fig. 1! may be, as already
mentioned, treated classically, and one can use a semiclassi-
cal kinetic theory to treat the electron transport in this direc-
tion. This means that for our purpose it is sufficient to intro-
duce and calculate a classical one-dimensional distribution
function Fn(x,p,t) for the electrons~where the channel in-
dex n is considered as a parameter! while the collisions
should be treated quantum mechanically.

The introduction of the phonons into this picture can be
done along the lines worked out in Refs. 1 and 3@see also
Ref. 11, where a semiclassical theory was used to derive a
semiclassical analog for the shot noise formula, Eq.~2!#. We
may also add that in Ref. 2 two approaches are used to treat
the same transport problem concerning weak phonon scatter-
ing in nanowires. One of them is based on a time-dependent
quantum theory exploiting the diagrammatic techniques; an-
other one is semiclassical. The results obtained by the two
methods are the same.

The semiclassical transport theory allows one not only to
find the time-averaged electron distribution functionF̄ in the
wire and, correspondingly, the mean current through a con-
ductor, but the temporal fluctuations of both of these quanti-
ties as well. Using the approach described in Refs. 19 and 20
~see also Ref. 21!, we will study the time evolution equations
for F̄ and ^dFdF& ~where we definedF as dF[F2F̄),
which both have the form of quasiclassical Boltzmann equa-
tion with an electron-phonon collision term.

To avoid the excessive proliferation of indexes and at the
same time to demonstrate the general scheme we will drop
the indices of transverse quantization of electrons, restoring
them only insomeequations. We start with the equation for
the average distribution functionF̄(x,p,t) :

]F̄~x,p,t !

]t
1v

]F̄~x,p,t !

]x
5I $F̄~x,p,t !%, ~5!

wherep andv are thex components of the electron quasi-
momentum and velocity.I $F̄(x,p,t)% is the electron-phonon
collision integral which, as usual, is a difference of ‘‘in’’ and
‘‘out’’ terms:

FIG. 1. Two-terminal Landauer resistor.
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I $F̄~p,x,t !%5I ~ in!$F̄~p,x,t !%2I ~out!$F̄~p,x,t !%,

I ~ in!$F̄~p,x,t !%5
2p

\ (
p8q

uVpqu2F̄~p8,x,t !@12F̄~p,x,t !#

3@dp82\qx ,p
d~«p82\vq2«p!~Nq11!

1dp81\qx ,p
d~«p81\vq2«p!Nq#, ~6!

I ~out!$F̄~p,x,t !%5
2p

\ (
p8q

uVpqu2F̄~p,x,t !@12F̄~p8,x,t !#

3@dp2\qx ,p8d~«p2\vq2«p8!~Nq11!

1dp1\qx ,p8d~«p1\vq2«p8!Nq#. ~7!

HereVpq is the matrix element of electron-phonon interac-
tion. Here we consider interactions of electrons with the
three-dimensional bulk phonons~although the phonons con-
fined within the nanostructure could have been easily in-
cluded into the scheme!. The summation over the phonon
branches is implied. We integrate in Eqs.~6! and~7! over the
three components of the phonon wave vector.q' indicates
the two transverse wave-vector components. The third com-
ponent is given by

qx56~p2p8!/\.

Therefore the third integration is equivalent to the integration
over the electron quasimomentump8 because of the conser-
vation of quasimomentum.

As a result, these equations can be transformed into the
following form ~we write all the indexes explicitly here!:

I ~out!$Fn~p,x!%5Fn~p,x!(
n8

E
2`

` dp8

2p\
@12Fn8~p8,x!#E d2q'

~2p!2
u^n8uexp~ iq'•r'!un&u2

3W~q…@Nqd~e82e2\vq!1~Nq11!d~e82e1\vq!#, ~8!

I ~ in!$Fn~p,x!%5@12Fn~p,x!#(
n8

E
2`

` dp8

2p\
Fn8~p8,x!E d2q'

~2p!2
u^n8uexp~ iq'•r'!un&u2W~q!@~Nq11!d~e82e2\vq!

1Nqd~e82e1\vq!#, ~9!

wherefn(r') are the wave functions of transverse quantiza-
tion, n is the channel index,e[en(p), e8[en8(p8), and

W~q!u^n8uexp~ iq'•r'!un&u25
2p

\
uVpqu2V , ~10!

whereV is the volume where phonons propagate.
In the isotropic22 approximation for the scattering by

acoustic phonons,23

W~q!5
pL2q2

rvq
, ~11!

whereL is the deformation potential constant for the longi-
tudinal phonons, andr is the mass density. For the scattering
by optical phonons,24

W~q!5~2p!2v0e
2S 1e`

2
1

e0
D 1

q2
, ~12!

where v0 is the longitudinal optical-phonon frequency at
q50, ande` and e0 are the high-frequency and the static
dielectric susceptibilities, respectively.

Here we take into account only the interaction between
electrons within a nanowire and bulk phonons and neglect
the same interaction within the contacts~as in Refs. 1–3!.
This can be justified, for instance, for the following typical
physical situation. We assume that contacts taper into a wire

adiabatically~see Ref. 25!. As, however, the width of the
contacts is much larger than the width of a wire the number
of channels within the contacts is also much larger. Most of
these channels are not current carrying, as the electrons be-
longing to them are reflected from the wire region back into
the corresponding contact. As for the current-carrying chan-
nels, one can easily check that the rate of electron-electron
(e-e) collisions is strongly suppressed for the one-
dimensional geometry. To do this it is sufficient to analyze
the energy and quasimomentum conservation law for the e-e
collisions~and take into consideration that the initial electron
states should be filled while the final states should be empty!.
We have

en~p!1en8~p8!5en9~p1\qx!1en-~p82\qx!.

For instance, for a one-channel situation
(n5n85n95n98), particularly interesting for us in the
present paper, these collisions are strictly forbidden.

As the contact region widens the number of channels is
enhanced and thee-e collisions rapidly become more and
more effective. As such collisions destroy the phase coher-
ence of the electron wave functions this means that the prin-
cipal variation of the~quasi!ballistic conductance is due to
the electron-phonon scattering events where the electrons
within the wire ~rather than those within the contacts! take
part.
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In the spirit of the Landauer-Bu¨ttiker-Imry approach,17,18

we take the boundary conditions for the transport equation,
Eq. ~5!, to be in the form

F̄~p.0,x52L/2!5 f L~p![
1

exp@~«p2mL!/kBT#11
,

F̄~p,0,x51L/2!5 f R~p![
1

exp@~«p2mR!/kBT#11
.

~13!

HeremL andmR are the chemical potentials of the reservoirs,
andT is the temperature. The difference between the chemi-
cal potentials is the voltage bias across a conductor: eV
5mL2mR . It is always assumed much smaller than the
chemical potentials of the reservoirs themselves.

In the absence of collisions with phonons and under the
stationary conditions, the solution of Eq.~5! is

F̄ ~0!~x,p!5u~p! f L~p!1u~2p! f R~p!, ~14!

where u(p) is the step function. This solution describes a
ballistic motion in the absence of scattering.

Adding a weak electron-phonon interaction results in

F̄5F̄ ~0!1 DF̄

with D̄F satisfying the first iteration of the Boltzmann equa-
tion

v] DF̄/]x5I $F̄ ~0!%.

Taking into account the boundary conditions, Eq.~13!, and
assuming that zero of the coordinate system is at the mid-
point of the wire~see Fig. 1! we arrive at a solution of this
equation in the form:3

DF̄~x,p!5
1

v Fx1
L

2
signpG I $F̄ ~0!~p!%. ~15!

We assume that the phonons are in equilibrium and hence
Nq is the Bose function. The detailed balance guarantees a
vanishing collision term for the equilibrium distribution
function at constant temperature and chemical potential. This
means that the distribution function~14! gives finite contri-
bution to the collision term if and only ifp and p8 are of
opposite sign, so that their chemical potentials are different.
In other words, only those phonons contribute that canback-
scatterthe electrons — see Ref. 3.

These considerations give theaveragedelectron distribu-
tion function along the wire in the presence of a weak inelas-
tic scattering. As for thefluctuating partof the distribution
function dF according to Refs. 19 and 20 the correlation
function ^dF(x8,p8,t8)dF(x,p,t)& satisfies for t8.t the
Boltzmann equation, Eq.~5!, in the first set of variables with
the following one-time correlation function as the initial con-
dition

^dF~x8,p8,t !dF~x,p,t !&5hd~x2x8!d~p2p8!

3F̄~x,p,t !@12F̄~x,p,t !#.

~16!

Let us now turn to the two-terminal scattering geometry
shown in Fig. 1. The current through the cross section of a
wire, which we choose to be near the right reservoir, is

J~ t !5
2e

h E2`

`

dp vF~x5L/2,p,t !, ~17!

where factor 2 is due to the spin degeneracy. In complete
analogy with the distribution function, the current has the
average valueJ̄ and the fluctuating part,dJ(t)5J(t)2 J̄. As
before, we assume time independence of bothF̄ and J̄. The
current noise spectral density in the limit of zero frequency is
given by the Fourier transform of the current-current corre-
lation function:

P54E
0

`

dt^dJ~ t !dJ~0!&

54S ehD
2E

0

`

dtE
2`

`

dpE
2`

`

dp8vv8x, ~18!

where

x5^dF~L/2,p8,t !dF~L/2,p,0!&.

Here we have made use of the conservation of the current,
which permits one to choose any cross section to calculate
the current fluctuations forv→0. We make the same choice
as above, namelyx5L/2. We will considerx separately for
the positive and negative values ofp.

Electrons withp.0 reach the right reservoir without fur-
ther scattering. Therefore,x contains only the term propor-
tional to d(t):

x~p.0!5
h

uv8u
d~ t !d~p82p!F̄~L/2,p!@12F̄~L/2,p!#,

~19!

whereF̄(L/2,p) is given by the sum of Eqs.~14! and ~15!,
taken atx5L/2 andp.0:

F̄~L/2,p.0!5 f L~p!1
L

uvu
I ~ in!$ f L~p!%2

L

uvu
I ~out!$ f L~p!%.

~20!

Electrons withp,0 can be, in fact, backscattered within
the wire and cross the cross sectionx5L/2 again. In order
to take into account all backscattering trajectories we,
at first, divide the wire into small pieces@x1 ,x2#,
@x2 ,x3#, . . . ,@xi ,xi11#, . . . ~see Fig. 1!. Then we introduce
the probability for an electron from the right reservoir to be
backscattered per unit of time,U{ p,0}→{ pk.0} and
sum over the contributions from all the pieces. As a result,
we obtain

53 10 081SHOT NOISE IN THE PRESENCE OF PHONON-ASSISTED . . .



x~p,0!5
h

uv8u Fd~ t !d~p82p!1(
ik

h
Dxi
uvu

U$p,0%→$pk.0%d~ t2t i !d~p82pk!G F̄~L/2,p!@12F̄~L/2,p!#. ~21!

Here pk is a final electron state after backscattering,t i is the time spent in the wire, andDxi[xi112xi . The distribution
function F̄(L/2,p) for electrons withp,0 is exactlyf R(p), as is clearly seen from Eqs.~14! and ~15!.

Substitution of Eqs.~19! and~21! into the expression for the shot noise spectral density, Eq.~18!, and the integration over
t andp8 finally gives

P54S ehD
2E

2`

`

dpuvu H u~p!
1

2 S f L1
L

uvu
I ~ in!$ f L%2

L

uvu
I ~out!$ f L% D S 12 f L2

L

uvu
I ~ in!$ f L%1

L

uvu
I ~out!$ f L% D

1u~2p!F122
L

uvu
dI ~out!$ f R%

d f R
G f R@12 f R#J . ~22!

Here

dI ~out!$ f R~p!%

d f R~p!
5(

p8
U$p,0%→$p8.0%

is the variational derivative of the collisional integral, and
f L,R[ f L,R(p).
Equation~22! should be understood in the following way.

It contains terms of the zeroth, first, and second order in the
small parameter

L

uvu
I ~ in,out!$ f L,R~p!%.

In general, it is not always permissible to retain the terms of
the second order. However, we have not discarded them be-
cause they are meaningful in some cases~see below — Sec.
III A !.

The obtained Eq.~22! is what we are looking for: it gives
the expression for the shot noise power in one-dimensional
nanowires with weak inelastic scattering by phonons taken
into account. This general formula allows one to study vari-
ous cases of interest. In particular, we will be interested in
three regimes, namely,eV@kBT, eV!kBT, and, finally, a
quasielastic scattering regime.

Before starting to discuss these cases, we would like to
give a detailed many-channel expression for the shot noise
spectral density in a quantum quasiballistic resistor:

P54S ehD 2(n E
2`

`

dpuvu H u~p!
1

2 S f L~n!1
L

uvu
I ~ in!$ f L

~n!%2
L

uvu
I ~out!$ f L

~n!% D S 12 f L
~n!2

L

uvu
I ~ in!$ f L

~n!%1
L

uvu
I ~out!$ f L

~n!% D
1u~2p!F122

L

uvu
dI ~out!$ f R

~n!%

d f R
~n! G f R~n!@12 f R

~n!#J . ~23!

Here

f L,R
~n! [ f L,R@«n~0!1p2/2m#,

where«n(0) is the position of the subband bottom, andm is
the electron’s effective mass.

III. APPLICATIONS OF GENERAL RESULTS

In this section we restrict ourselves to the one-channel
case.

A. Large-voltage, zero-temperature case

Let us consider now the case, when the voltage biaseV
5mL2mR applied across the conductor is finite while the
temperature is assumed to be zero. In this caseNq50 and
only processes of phonon emission are possible. The distri-
bution functions for electrons in the leads are the step func-
tions:

f L,R~E!5u~mL,R2E!. ~24!

This leads to a substantial simplification of the problem. In
particular, I (in)$ f L(p)% and dI (out)$ f R(p)%/d f R(p) become
zero, while (L/uvu)I (out)$ f L(p.0)%5 f L(p)R(«p), where

R~«p!5
L

uvu E2`

0 dp8

2p\E d2q'

~2p!2
u~@«p2mR#2\vq!

3u^0uexp~ iq'r'!u0&u2W~q!d~«p2\vq2«p8!

~25!

Here we introduced, in particular, the effective ‘‘inelastic
reflection’’ coefficientR(«p), which describes efficiency of
electron backscattering in the course of phonon emission.

For the shot noise spectral density we now have, making
use of Eq.~22!:
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P5
2e2

h E
mR

mR1euVu
dER~E!@12R~E!#. ~26!

Therefore, the shot noise power is determined by the energy
dependence of the ‘‘inelastic reflection’’ coefficient
R(E)!1.

We wish to emphasize that here we retain the terms qua-
dratic in the reflection coefficient~along with terms linear in
R). At the same time we do not take into account the qua-
dratic terms while calculating the corrections to the distribu-
tion function itself due to the electron scattering@see Eq.
~15!#. This is permissible, because in the case under discus-
sion (eV@kBT) the latter are of thethird order inR. In-
deed, the second-order corrections toDF could appear after
taking into account the second scattering event for an elec-
tron that has already experienced a scattering. However, the
probability of this event is proportional to the number of
empty states 12F(p), which in its turn is proportional to
R.

We start by considering the 3D extended acoustic
phonons for which the matrix elements of the electron-
phonon interaction are given by Eq.~11!. We are interested
in the electron backscattering, therefore there should be some
minimal wave vector for a phonon to be emitted. Namely,
qmin52pF /\, wherepF is the Fermi momentum. This leads
to a threshold in the inelastic reflection coefficient energy
dependence, and, furthermore, inP(V).

Indeed,R(E)50 forE,2pFs[Eth , where we introduce
the notationE5«p2mR . One can show that for energies
near the threshold when (E2Eth)/Eth!1, in the first ap-
proximation in this small parameter, the coefficient of the
inelastic reflection is

R~E!5
E2Eth

Eth
R0 , ~27!

where

R05
Lm2W~qmin!

\4p2 . ~28!

Here we have taken into account that in real structures
E th52pFs is of the same order as\s/d. The shot noise
power in this limit is

P~V!5
e2

h
R0

~euVu2Eth!
2

Eth
. ~29!

Well above the threshold, whereE/Eth@1, the matrix el-
ement

u^0uexp~ iq'r'!u0&u}~q'd!22,

d being the thickness of the nanowire. ThenR(E)5R0 ,
while the shot noise power becomes proportional to the ap-
plied voltage

P~V!5
2e2

h
euVuR0 . ~30!

The overall dependence of the shot noise powerP(V) of
the two-terminal mesoscopic nanowire in the phonon-
assisted quasiballistic resistance regime is shown in Fig. 2.

One sees that the nonequilibrium noise voltage dependence
in this case differs from a simple linear law which is due to
the inelastic type of the electron backscattering within the
wire.

Let us now consider the inelastic reflection due to the 3D
polar optical-phonon emission. Optical phonon is the sim-
plest example of a phonon mode with a nonvanishing mini-
mal frequency. The generalization to the other modes of such
type, like the phonons confined within a nanostructure, or the
confined optical phonons, is straightforward.

We denote the optical-phonon energy by\v0 and do not
take into account the phonon dispersion. The matrix ele-
ments of the electron-phonon interaction are given by Eq.
~12! in this case. Under these conditions the contribution of
the optical-phonon emission processes toR vanishes for the
electron energies smaller than\v0 while in the vicinity of
\v0 the reflection coefficient exhibits a jump,

DR\v0
5R\v0102R\v020'R0 , ~31!

whereW(q) in R0 is given by Eq.~12!. The shot noise
powerP(V) has a bend whenV crosses\v0 /e.

B. Linear response regime

Let us consider the case of the small applied voltageeV
5mL2mR!kBT. In order to specify the notations we take
f R as an ‘‘equilibrium’’ distribution function and denote it
f 0 , while f L is ‘‘shifted’’ ~with mL5mR1eV). As
eV!kBT we expandf L up to the second order ineV:

f L~«p ,mL ,T!5 f 01eV
] f 0
]«p

1
~eV!2

2

]2f 0
]«p

2 . ~32!

Now we should substitute this expansion into Eq.~22!.
The obtained expression contains the voltage-independent
part responsible for the thermal noise, and the terms propor-
tional to the voltage squared, i.e., a nonequilibrium contribu-
tion to the noise. Before writing them in the explicit form it
is convenient to introduce the coefficients of the ‘‘inelastic
reflection’’RE ‘‘inelastic ‘in’-term’’ P E that make the ex-
pressions more concise. Making use of Eqs.~6!, ~7!, and~32!
we have

FIG. 2. The overall dependence of the shot noise powerP(V) of
two-terminal mesoscopic nanowire in the regime of phonon-
assisted quasiballistic resistance.
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L

uvu
I ~out!$ f L~«p!%5 f L~«p!

L

uvu(p8q
2p

\
uVpqu2

3u~2p8!@12 f 0~«p8!#@•••#

[F f 01eV
] f 0
]«p

1
~eV!2

2

]2f 0
]«p

2 GR«p
,

L

uvu
I ~ in!$ f L~«p!%5@12 f L~«p!#

L

uvu(p8q
2p

\
uVpqu2

3u~2p8! f 0~«p8!@•••#

[F12S f 01eV
] f 0
]«p

1
~eV!2

2

]2f 0
]«p

2 D GP «p
,

~33!

where@•••# stands for the terms in Eqs.~6! and ~7!, which
containd functions.

There is an important relation betweenRE andP E that is
due to the fact that the collisional integral vanishes after a
substitution of the equilibrium distribution function,
I $ f 0%50,

@12 f 0~«p!#P «p
2 f 0~«p!R«p

50. ~34!

Exploiting this relation and Eq.~33! we have, from Eq.
~22!,

P5Pth1P1~V!, ~35!

Pth54
e2

h E dE f0~12 f 0!~12RE!, ~36!

P1~V!5~eV!2
2e2

h E dEH S ] f 0
]E D 2@2~RE1P E!21#

1
1

2

]2f 0
]E2 @122 f 01P E2RE#J . ~37!

Here Pth is the thermal noise power, whileP1(V) is the
nonequilibrium contribution to noise. One can see that

~1/2!E dE~]2f 0 /]E
2!~122 f 0!5E dE~] f 0 /]E!2,

and, therefore,

P1~V!5~eV!2
2e2

h E dEF S ] f 0
]E D 22~RE1P E!

1
1

2

]2f 0
]E2 ~P E2RE!G . ~38!

After substituting the explicit form of
f 05@exp(E/kBT)11#21 ~we refer here all energies to the
chemical potentialmR), and taking into account Eq.~34!,
which gives

RE2P E5tanh~E/2kBT!~P E1RE!,

we arrive at the following result:

P1~V!5~eV!2
2e2

h~kBT!2
E

2`

1`

dE
12sinh2~E/2kBT!

8cosh4~E/2kBT!

3@RE1P E#5
1

3

~eV!2

kBT

e2

h
RE'0 , ~39!

~40!
whereRE'05R0 , see Eq.~28!.

C. Quasielastic scattering

It is instructive to show how one can obtain the expres-
sion for shot noise assuming the electron-phonon scattering
to be quasielastic. We compare our result with that obtained
by Beenakker and van Houten in Ref. 11.

If the scattering is quasielastic the terms in the collisional
integral, due to the Pauli principle, such as@12 f a(«p)#,
cancel. Then the conservation of the number of particlesfor
each energy valuegives

uI ~out!$ f L~R!~E!%u5uI ~ in!$ f R~L !~E!%u[
uvu
L
f L~R!RE .

~41!

Substituting this into Eq.~22! and rearranging the terms
one gets the expression for shot noise induced by weak
quasielasticelectron-phonon scattering:

P5P11P2 , ~42!

P152
e2

h E dE~12RE!@ f L~12 f L!1 f R~12 f R!#, ~43!

P252
e2

h E dERE~12RE!~ f L2 f R!2. ~44!

This expression is analogous to the result obtained by
Beenakker and van Houten in Ref. 11 for shot noise, which is
a consequence of the purely elastic scattering. Here, how-
ever, it is permissible to retain the terms proportional to
R2 only, provided thateV@kBT.

IV. CONCLUSION

We have several conclusive remarks, the first of which
concerns this important and interesting question: How can
one separate experimentally the phonon-induced contribution
to the shot noise found in the present paper from other con-
tributions such as a weak impurity-scattering-induced noise,
a noise caused by the two-level systems, etc? The answer is
quite simple and promising. The contribution we found de-
pends in a specific way on the Fermi quasimomentum@see
Eq. ~29!#. The Fermi quasimomentum can be easily tuned in
practice, so that one can separate the contribution to the shot
noise under discussion.

We assume the transport to be quasiballistic, which means
that the electron-phonon collisional events must be rare. To
satisfy this requirement, the electron mean free path should
be somewhat bigger than the length of the quantum wire
L.

We have considered here the case of the simplest geom-
etry, i.e., a quantum wire of a constant cross section. How-
ever, the results of our consideration can be easily general-
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ized for the case of a so-called adiabatic transport~see Ref.
25!, where the variation of the potential profile is smooth on
the scale of the de Broglie wavelength.

The phonons throughout the paper are assumed to be in
equilibrium. An important generalization would be to con-
sider the transport and noise under the nonequilibrium pho-
non conditions.

A generalization taking into consideration phonons con-
fined within a nanostructure~see Ref. 26! is rather straight-
forward. To take into account phonons localized near a nano-
structure due to the dynamical screening~cf. with Ref. 27!
may be more involved but still very important.

To summarize, we have developed a theory of the shot
noise in quantum quasiballistic channels under the condition
of a non-Ohmic phonon-assisted transport. A general formula
for the shot noise caused by the weak electron-phonon scat-
tering in an otherwise purely ballistic quantum channels is
derived. The general results are used to work out expressions
for some particular cases of interest. We have studied the
cases of small (kBT!eV) and large (kBT@eV) tempera-

tures, as well as that of the quasielastic scattering. For small
temperatures a remarkable threshold effect for the shot noise
is predicted. Such an effect can be used to analyze the spec-
trum of the phonons interacting with the electrons of a
nanowire.
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