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We describe a method for numerically incorporating electron-electron scattering in quantum wells for small
deviations of the distribution function from equilibrium, within the framework of the Boltzmann equation. For
a given temperatureT and densityn, a symmetric matrix needs to be evaluated only once, and henceforth it
can be used to describe electron-electron scattering in any Boltzmann equation linear-response calculation for
that particularT andn. Using this method, we calculate the distribution function and mobility for electrons in
a quantum well, including full finite-temperature dynamic screening effects. We find that at some parameters
that we investigated, electron-electron scattering reduces the mobility by approximately 40%.

I. INTRODUCTION

The effect of electron-electron (e-e) interactions on trans-
port in bulklike systems of various dimensionalities is still an
area of active research to this day, both experimentally1,2 and
theoretically.3,4 On the face of it, it would seem that in the
case of doped parabolic band semiconductors where um-
klapp processes are negligible,e-e scattering should not af-
fect the linear transport properties of bulklike systems
~purely quantum effects such as weak-localization correc-
tions excepted! since ane-e scattering event conserves the
total current in the system. Nevertheless, it has been appre-
ciated for a long time thate-e scatteringcan affect the mo-
bility of a system semiclassically by scattering carriers into
or out of parts of the Brillouin zone that are strongly affected
by the other available scattering mechanisms.5,6

In Ref. 5, it was shown that the expression for mobility in
the presence of quasielastic scatters takes on different forms
in the limits of zero and infinitely stronge-e scattering.
Given a quasielastic energy-dependent transport~i.e., calcu-
lated with the 12cosu term! scattering timet~«! due to other
scattering processes in the system such as acoustic phonons
or impurities, the mobilities of the system for the cases of
zero and infinitee-e scattering rates, respectively, are given
by
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where n is the carrier density of the system,«(k)
5\2k2/(2m), f 0„«(k)… is the Fermi-Dirac distribution func-
tion, d is the dimensionality of the system, and we are as-
suming an isotropic parabolic band system. Clearly, for the
case when that temperatureT is small on the scale of the

energy scale over whicht(«) varies significantly,
^t&'@^t21&#21. Conversely, in the case whereT is large on
the scale over whicht(«) varies, there can be significant
differences in the calculated mobility using the two different
methods. For example, we show below that in particular
cases in GaAs quantum wells,m0 /m`'2. Thus, for accurate
theoretical determination of the mobility at the semiclassical
level, it is important thate-e scattering effects are included.
Furthermore, it has been shown7 that experiments measuring
the drag rate between electron gases between two coupled
quantum wells are sensitive to the exact details of the linear-
response distribution functionf in each layer. Sincef is
strongly affected bye-e scattering in the intermediate tem-
perature regimeT'0.5TF ~whereTF is the Fermi tempera-
ture!, it is important to include the effects ofe-e scattering in
calculations of the drag rate.

In this paper, we demonstrate an efficient way of includ-
ing e-e scattering in the calculation of linear transport for
two-dimensional ~2D! cylindrically symmetric systems,
within the semiclassical Boltzmann equation formalism.
Similar calculations have been presented for linear transport
in three dimensions3 and for relaxation properties of isotro-
pic nonequilibrium distributions in two dimensions.8 Within
this formalism, the Boltzmann equation for linear response
can be solved exactly~within numerical accuracy!. We have
included full effects of finite-temperature dynamical screen-
ing, which automatically includes phenomena such as Lan-
dau damping and collective mode enhancements to scatter-
ing. The description of thee-e scattering formalism for the
Boltzmann equation is given in Secs. II and III, and Sec. IV
contains the results and discussion. Throughout this paper,
we assume that bands are isotropic and parabolic.

II. ELECTRON-ELECTRON SCATTERING PROBABILITY

Thee-e scattering occurs in the presence of other conduc-
tion electrons, and hence the bare interparticle Coulomb in-
teractionU(q) is screened. Furthermore, at the intermediate
temperatures in which we are interested, the energy transfer
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between the electrons in a scattering event is often a substan-
tial fraction of the kinetic energy of the electrons, and hence
the scattering matrix elements fore-e interactions should be
calculated using thedynamicallyscreened Coulomb interac-
tion V(q,v)5U(q)/e(q,v), wheree(q,v) is the dielectric
function. In this paper, we usee(q,v) given by the random-
phase approximation~RPA!, which we evaluate using a
method described previously by us,7 and we use the Born
approximation for the scattering probability.

The scattering probabilityw(k18s1 ,k28s2 ;k1s1 ,k2s2) for
a pair of electrons initially in statesk1s1 ,k2s2 to be scat-
tered tok18s1 ,k28s2 depends on whether or not the electrons
have the same or opposite spins. For electrons with the same
spin, say↑,

w~k1q↑,k82q↑;k↑,k8↑ !

5
1

2

2p

\
uV~q,«k1q2«k!2V~k82q1k,«k82q2«k!u2.

~3!

The fraction 1/2 in Eq.~3! is due to double counting, since
w(k1q↑,k82q↑;k↑,k8↑) and w(k82q↑,k1q↑;k↑,k8↑)
describe exactly the same process. For opposite spins,

w~k1q↑,k82q↓;k↑,k8↓ !5
2p

\
uV~q,«k1q2«k!u2. ~4!

There is an equal probability that an electron scatters off
another electron with equal or opposite spin, so one can sum
over the Eqs.~3! and ~4! to obtain an ‘‘average’’ scattering
probability9

w̄~k1q,k82q;k,k8!

5
2p

\
$uV~q,«k1q2«k!u22

1
2Re@V~q,«k1q2«k!

3V* ~k82q2k,«k82q2«k!#%. ~5!

The first and second terms in Eq.~5! are referred to as the
direct and exchange terms, respectively.

In practice, the exchange term often makes calculations
considerably more complicated and is usually ignored. The
physical grounds for doing so are as follows. First,e-e col-
lisions are usually dominated by smallq scattering@because
V(q,«) falls quickly with q for finite «#. The direct ~ex-
change! term has the formuV(q,«)u2 @V(q,«)V(q8,«8) with
q8@q#, which implies that the direct term usually dominates
over the exchange. Also, the sign of exchange term can
sometimes be negative, which leads to cancellation of this
term within the collision integral. The effect of the exchange
term was studied in a 3D system with statically screened
interaction.10 There it was found that the exchange term was
significant forna0

351 but not forna0
350.1. In the calcula-

tions that follow we have usedna0
250.15, and since we

furthermore include dynamical screening, which leads to a
peaked interaction at smallq, we can assume that the direct
interaction dominates in our case.

We write down the formal expressions for the electron-
electron scattering operator both including and excluding the

exchange term. However, in the actual numerical evaluation,
we ignore the exchange interaction.

III. ELECTRON-ELECTRON SCATTERING OPERATOR

The Boltzmann equation for electrons in uniform electric
field E producing a forceF 5 ~2e!E is

\21F•
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p,i

, ~6!

where the subscriptse-e and p,i are for scattering due to
electron-electron interactions and the phonon1impurity in-
teractions, respectively.

We define the functionC(k), related to the deviation of
the distribution function from equilibrium, as

f ~k!2 f 0~k![ f 0~k!@12 f 0~k!#C~k!. ~7!

This function can be written in terms of a sum of angular
components

C~k,u!5(
n

cn~k!cos~nu!, ~8!

whereu is the angle from an axis of symmetry~here, the
direction of the electric field!. By the assumption of cylindri-
cal symmetry of the system, the scattering terms in the Boltz-
mann equation do not mix different cos(nu) components.11

One can therefore isolate and concentrate on the cosu com-
ponentc1(k), since this is the one that affects the current
and hence the mobility. In three-dimensional systems, this
method was used by Rode12 for electron-phonon scattering,
and extended by Sanborn3 to include electron-electron inter-
actions.

The cosu component of the linearized electron-electron
collision operator@i.e., neglecting higher powers inC(k)#,
which we denoteI e-e@c1#, is

13

I e-e@c1xk,F#~k!

522E dk8

~2p!2
E dq

~2p!2
w̄~k1q,k82q;k,k8!

3 f 0~k! f 0~k8!@12 f 0~k1q!#@12 f 0~k82q!#

3d~ek1ek82ek1q2ek82q!@c1~k!xk,F1c1~k8!xk8,F

2c1~ uk1qu!xk1q,F2c1~ uk82qu!xk82q,F#. ~9!

Here,xk,k8 is the cosine of the angle betweenk andk 8. The
goal is to write the operatorI in the form

I @c1xk,F#~k!5xk,FE
0

`

dp pK~k,p!c1~p!. ~10!

The kernalK(k,p) is symmetric, from detailed balance,13

and the extra factor ofp in the integral comes from phase
space. Thus, in order to incorporate electron-electron scatter-
ing for a particular density and temperature into a calcula-
tion, one need only generateK(k,p) once and store it; it can
then be used for all calculations involving electron-electron
scattering at that density and temperature.
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The four c ’s in Eq. ~9! give four terms, each of which
give a contribution to the kernel,K5K11K21K31K4 . In
the following subsections, we explicitly write down the form
of each of these kernels.

A. First term, involving c1„k…

Thec1(k)xk,F can be factored out, and we obtain

K1~k,p!52d~k2p!k21f 0~k!E dq

~2p!2

3@12 f 0~k1q!#2E dk8

~2p!2
f 0~k8!

3@12 f 0~k82q!#w̄~k1q,k8;k,k81q!

3d~«k81q2«k82$«k1q2«k%!. ~11!

In the event where the exchange interaction can be ne-
glected, one obtains, as in Ref. 3~we denote the scattering
integral that neglects the exchange interaction with an aster-
isk!,

K1* ~k,p!52d~k2p!F f 0~k!

pk E dq

~2p!2

3@12 f 0~k1q!#
2p

\
uV~q,«k1q2«k!u2

3Im@x~q,«k2«k1q!#nB~«k1q2«k!G , ~12!

where nB(«)5@exp(b«)21#21 is the Bose function, and
x(q,v) is the RPA polarizability.

B. Second term, involvingc1„k8…

Since cos(u1u8)5cos(u)cos(u8)2sin(u)sin(u8) and the
sin terms vanish from symmetry considerations, we can write
xk8,F5xk,Fxk8,k . Then, the second kernel is

K2~k,p!522
f 0~k! f 0~p!

~2p!2
E
0

2p

duk,p cosuk,pE dq

~2p!2

3w~k1q,p2q;k,p!@12 f 0~k1q!#

3@12 f 0~p2q!#d~«k1«p2«k1q2«k2q!. ~13!

Theq integration can be evaluated by the change of vari-
ables,

q5Q1Dk/2, Dk5p2k, k5~k1p!/2. ~14!

Then, thed function in Eq.~13! becomes

d~«k1«p2«k1q2«p2q!5dH \2

m FQ22S Dk

2 D 2G J , ~15!

which gives
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8p4\2 E
0

p
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3E
0

2p

df w~k1Q,k2Q;k1Dk,k2Dk!

3@12 f 0~«k1Q!#@12 f 0~«k2Q!#, ~16!

wheref is the angle betweenQ andk.

C. Third term, involving c1„zk1qz…

Usingxk1q,F5xk,Fxk,k1q in the integrand and lettingp 5
k1 q, gives

K3~k,p!5
2 f 0~k!@12 f 0~p!#

~2p!2
E
0

2p

dup,k cosup,k

3E dk8

~2p!2
f 0~k81p2k!

3@12 f 0~k8!#w̄~p,k8;k,k81p2k!

3d~«p1«k82«k2«k81p2k!. ~17!

Thed functiond(\2(p2k)•(k82k)/m) reduces thedk8 di-
mensional integral to one dimension.

If one neglects exchange, then as with the first term the
dk8 integral can be done, giving

K3* ~k,p!5
1

2p3

@ f 0~«p!2 f 0~«k!#

4sinh2@~«p2«k!/~2kBT!#

3E
0

p

duk,pcosuk,p
2p
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uV~p2k,«k2«p!u2

3Im@x~p2k,«k2«p!#. ~18!

D. Fourth term, involving c1„zk82qz…

The kernel is

K4~k,p!5
2 f 0~k!

~2p!2
E
0

2p

dup,kcos~up,k!

3S E dq

~2p!2
w~k1q,k82q;k,k8!

3@12 f 0~k1q!# f 0~p1q!

3d~«k1«p1q2«k1q2«p! D ~19!

The term in thed function goes as

«p1q2«p1«k2«k1q5
\2

m
$q•~p2k!%, ~20!

which reduces theq integration down to one dimension.
In fact, the kernels for higher-order components are very

similar to the ones given above. For an angular variation
proportional to cosnu, the K1 term is identical for alln,
whereas withK2 , K3 , andK4 one simply replaces cosu with
cosnu in the u integration.
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We have shown that one can calculate the matrix
K(k,p), which gives the electron-electron scattering term for
small deviations from equilibrium. Once the matrixK(k,p)
has been calculated, one simply needs to iterate the equation
for c1(k) until convergence is obtained.

In order to calculatec1(k) for the case when thee-e
scattering rate dominates, it is often useful to use the fact that
electron-electron scattering leaves a drifted Fermi-Dirac dis-
tribution invariant.14 Thus, for the case of elastic or quasi-
elastic collisions, one can define

c̃1~k!5c1~k!2c1
DF~k!, ~21!

wherec1
DF(k) 5 \kvd/(kBT) is for a drifted Fermi-Dirac

distribution. Anyvd can be used. In our case, because we cut
off the matrix K(k,p) at a kmax, which implicitly sets
c̃1(k.kmax) 5 0, we chosevd , which givesc̃1(kmax) 5 0
so that the distribution function is continuous atkmax.

We write the linearizede-e scattering term as

I e-e@c1~k!#52
c~k!

tee
1J@c1~k!#, ~22!

where the first term on the right-hand side corresponds to the
diagonalK1 term andJ corresponds toK21K31K4 . The
Boltzmann equation forc1(k) in the case when the other
scattering mechanisms are quasielastic~which might include
acoustic-phonon scattering, which generally involves very
small energy electron loss! is

eEv~k!S ] f 0
]« D52

f 0~k!@12 f 0~k!#@c̃1~k!1c1
DF~k!#

tel~k!

2
c̃1~k!

te-e~k!
1J@c̃1#~k!, ~23!

wheretel
21(k) is the quasielastic scattering rate. This implies

that one must iterate the equation

c̃1~k!5

eEv~k!

kBT
f 0~k!@12 f 0~k!#1J@c̃1#2 f 0~k!@12 f 0~k!#c1

DF~k!tel
21~k!

f 0~k!@12 f 0~k!#tel
21~k! 1 te-e

21~k!
~24!

to find c1(k).

IV. RESULTS AND DISCUSSION

We study the case of electrons confined in a 100-Å-wide
square GaAs quantum well with infinite barriers. We assume
that there is ad-doping layer of~uncorrelated! charged im-
purities, equal in density to that of the electrons in the well,
situated a distanced away from the center of the well. We
included three scattering mechanisms:e-e, charged-
impurity, and acoustic-phonon scattering, and we approxi-
mated the acoustic-phonon scattering as being elastic.

We calculated the matrix in the form of 2003200 grid
points fromE50 toE55kF , and we used spline routines to
interpolate between the grid points. TheK3(k,p) and
K4(k,p) diverge logarithmically ask→p, which compli-
cates the splining procedure, but we got around this problem
by spliningK3,4(k,p)/ ln(uk2pu), which is a smooth function.

In Fig. 1, we show the deviation functionc1(k)/k for a
fixed densityn51.531011 cm22 and temperatureT530 K,
for several different distancesd of the ionized impurities
from the center of the quantum well. Note that when the
distribution is a drifted Fermi-Dirac function,c1(k)/k
5const. Thus, as the impurities are moved further away, the
impurity scattering becomes weaker and thee-e scattering
starts to dominate15 and drives the distribution function
closer to a drifted Fermi-Dirac function. The inset shows
c1(k) calculated both including and excluding electron-
electron scattering ford5100 Å, which shows more clearly
the effect ofe-e on c1(k). While transport experiments in a
single layer are not particularly dependent on the details of
the shape ofc1(k), it has been shown

7 that drag experiments

in coupled quantum wells are quite sensitive to the details of
c1(k). In particular, whenc1(k) rises faster thank ~which
implies that there are more carriers in the high-energy region
than for a drifted Fermi-Dirac distribution!, the drag rate

FIG. 1. Deviation functionc1(k)k
21 ~normalized to 1 at

k50) for electrons responding to a weak static electric field in a
GaAs quantum well, width 100 Å, densityn51.531011 cm22 and
temperatureT530 K, for distancesd550, 150, 250, and 350 Å of
the charged impurity layer from the center of the well. The collision
term includes screened impurity, acoustic-phonon and electron-
electron scattering terms. The further the impurities are moved
away from the well, the more dominant the electron-electron scat-
tering becomes and the distribution tends to a drifted Fermi-Dirac~a
pure drifted Fermi-Dirac is a straight horizontal line!. The solid
~dashed! curve in the inset shows the deviation function~in arbi-
trary units! for d5100 Å calculated including~excluding! electron-
electron scattering.
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increases because high-energy particles give a larger contri-
bution to the overall drag rate, and there is greater opportu-
nity for coupling to the plasmons of the system, which also
enhances the drag rate. Therefore, for the purpose of calcu-
lating the drag rate in coupled quantum wells in intermediate
temperatures, it is crucial to calculate the actual form of
c1(k) accurately, including all salient scattering mecha-
nisms.

Figure 2 shows the mobilitym as a function of ionized
impurity distanced from the center of the quantum well.
Also shown are the mobilities m05e^t&/m and
m`5e/(^t21&m), for the limits of zero and infinite electron-
electron scattering, respectively. Them0 is generally larger
thanm` becausee-e scattering tends to scatter ‘‘runaway’’
electrons with large velocities~where the impurity scattering

rate is small! back into lower velocity states. The inset shows
thatm0 for this case can be almost twicem` .

As d becomes larger, thee-e scattering dominates over all
other scattering mechanisms andm→m` . Conversely, for
smalld, the impurity scattering is relatively large compared
to the electron scattering, andm is closer to them0 than
m` . The crossover fromm0 to m` is shown with the open
squares in the inset of Fig. 2. The crossover occurs when the
impurity scattering and electron-electron mean free paths be-
come equivalent. The transport scattering rate, for
impurity scattering is given byt tr

215e/(mm)52.631016

cm2 V21 s22/m. The electron-electron scattering in two-
dimensional systems is approximately given by16,17

te-e
21'

EF

\ FkBTEF
G2F lnS EF

kBT
D1 lnS 2qTFpF

D11G . ~25!

For this system, this is on the order of 1012 s21. Thus, the
crossover point, which should occur whent tr

21 and te-e are
equal, is given bym'33104 cm2 V21 s21. An inspection of
Fig. 2 shows this to hold. Chabasseur-Molyneux
et al.2 have also experimentally found this crossover in
GaAs/AlxGa12xAs heterojunctions. Finally, atd5150 Å,
m'0.6m0, implying thee-e scattering has caused a substan-
tial reduction in the mobility.

To summarize, in this paper we have described a method
of including electron-electron scattering, including full
finite-temperature dynamical screening, exactly in the Boltz-
mann equation, for small deviations of the distribution func-
tion from equilibrium. Using this method to calculate the
distribution function and mobilities for electrons in a GaAs
quantum well, we find a well-defined crossover fromm0 to
m` ~which can be significantly different from each other!
when thee-e and impurity scattering mean free paths are
equivalent. For certain parameters studied,e-e is responsible
for reduction in the mobility of up to 40%.
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