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We present the results of studying the influence of different environmental states on the coherence of
guantum processes. We choose to discuss a simple model that describes two electronic reservoirs connected
through tunneling via a resonant state. The model could, e.g., serve as an idealization of inelastic resonant
tunneling through a double-barrier structure. We develop Schwinger’s closed time path formulation of
nonequilibrium quantum statistical mechanics, and show that the influence of the environment on a coherent
guantum process can be described by the value of a generating functional at a specific force value, thereby
allowing for a unified discussion of destruction of phase coherence by various environmental states: thermal
state, classical noise, time-dependent classical field, and a coherent state. The model allows an extensive
discussion of the influence of dissipation on the coherent quantum process, and expressions for the transmis-
sion coefficient are obtained in the possible limits.

[. INTRODUCTION port process. We shall study the general problem of quantum
transport where electronic current reservoirs provide elec-
The progress in fabrication of submicron structures hagrons to an active region where interaction with an environ-
led to a wealth of new structures whose transport propertiegient can take place. The reservoirs correspond in reality to
are dominated by the feature that electronic transport througlarge electrodes, and we can describe the Hamiltonians for
the structure takes place coherently. However, additional dehe left and right electrodes in terms of their electron energy
grees of freedom in addition to those of single electrons aréevels:
present and it is of importance to account for their influence
on coherent processes. In the following we shall investigate H= at a i
how different environmental states influence the quantum o 5 €p.cp,0%p.o-
process of main interest. Although we shall choose a model
that is directly relevant to transport properties of a double-The quantum numbey labels the momentum of the electron
barrier structure or transport through a quantum dot, thetates,oc=I,r refers to the left and right electrode, respec-
technique we develop is of general interest. tively, anda;,a creates particles in states with these quantum
The paper is organized as follows: In Sec. Il we model thenumbers with the corresponding energy,, .
system whose transport properties will be studied, and in The central activésample region can in the absence of
Sec. Il we show how to describe the transmission probabilcoupling to the reservoirs be described by a Hamiltonian or
ity of a structure in terms of Green’s functions. In Sec. IV weequivalently its energy levels. The single-particle-energy at
discuss the main approximation, which will allow an analyti- the central site, labeled, is €. corresponding to the term in
cal description of the influence of dissipation on the transthe Hamiltonian
mission properties. In Sec. V we introduce the closed time
path formulation and develop the description of the destruc- He=e.ala,. 2
tion of phase coherence in terms of a generating functional
technique, and in Sec. VI we discuss the effects of different In the following we shall consider a model that allows
environmental states: thermal and coherent states, the extesxtensive analytical calculations, and therefore restrict the
nal field case, and the fluctuating level model. We shall fomumber of levels relevant in the central region to one. Even-
all these cases derive closed expressions for the transmissi@mally we shall consider also the case of two levels. In the
probabilities, and compare the results in order to notice simievent that the reservoirs are connected through the central
larities and differences in the influence of different environ-site, electrons are transmitted between them. Such a situation
ments. In Sec. VIl we discuss destruction of phase coherenagan quite generally be modeled by transfer matrix elements,
using the generic Aharonov-Bohm situation. Finally in Sec.vp’(,, between the reservoirs and the central region. The cou-
VIl we summarize and conclude. pling of the electrodes to the central site is therefore de-
scribed by the tunneling Hamiltonian

Il. THE MODEL FOR STUDYING DESTRUCTION
OF PHASE COHERENCE Hi= 2 {Vpoalap,+H.cl. ©)
po

In this section we shall set up a minimal model describing
the dissipative feature of the general quantum transport probFhe transfer matrix elements are here considered to be phe-
lem. The simplifications are introduced in order to be able tonomenological parameters, but can of course for any chosen
treat analytically the influence of environments on the transimicroscopic model of say a double barrier be expressed in
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terms of the potential profile and the carrier mass. The pi=Py *p (9)
- . . - - p’.l Pbs
HamiltonianH, for the electronic system of interest is there-
fore given by whereP,, | is the projection operator describing an electron
in the left electrode in momentum staié
He=H;+H,+Hg+H,. 4
Por =P Ip" 1. (10

Within the sample region we allow for interaction with an ) _ _
environment. For our purpose we can quite generally assumEne state of the environment is presently arbitrary and de-

a bosonic environment with a corresponding HamiltonianScribed by the statistical operatpy . As regards the trans-
H, that has the standard normal mode form mission problem, given the above initial state, all informa-

tion can be extracted from the probability, |, (), to

s L find the electron in the right electrode at timeith momen-
Hbzz ho{bab,t 7} ®  wm p. This conditional probability is given by the expres-

‘ sion
in terms of the bosonic creation and annihilation operators,

bz andba. Pp’,l—»p,r(t):Tr(piUT(t:ti)Pp,rU(tvti))a (11)
For the coupling of an electron at the central site we take . L
a linear coupling to the normal modes wherePy, is the projection operator

Hi=aIaCX, (6) Pp,r:|p-r><pvr| (12

whereX is the collective environment displacement operatorcO™esponding to the assumed final outgoing particle state
with momentump in the right electrode, and

X=> N bl+b,}, 7) U(t,t,)=e (MHI=t) (13

is the evolution operator corresponding to the total Hamil-
tonian. The trace with respect to all the degrees of freedom is
denoted by Tr. The absence of any environment operator
H=H.+H.+H ®) discriminating the final states of the environment is in accor-
— Mg b i . . . . ..
dance with the typical experimental condition pertaining to
has been discussed in a variety of contéxtsst recently in  the electronic conduction process, namely, that the environ-
the context of inelastic resonant tunnelihg, where the mental degrees of freedom are not observed.
model has served as a simplified description of the influence For an electron to propagate between the reservoirs it first
of interaction with phonons on the transport properties of &has to enter the sample region and, last, exit it. In the event
double-barrier structure. In the present account we shall nove only explicitly consider interaction with the environment
only discuss a thermal environment, but a variety of environin the sample region, we can exploit this feature and intro-
mental states and their influence. A purpose of the paper is tduce a discussion in terms of the effective coupling between
present a calculational scheme that allows a unified descrigeservoirs and the sample region. The chosen model has this
tion of arbitrary environments, and in a direct way exhibitsfeature to the extreme. In the assumed model the electron
the physical content of a model so that calculations withinonly couples to the environment at the central site. We can
more realistic models can be made tractable. We now pratherefore express the transition probability in a form that
ceed to describe in detail the transmission properties of thexplicitly only involves the dynamics of the electron at the
system under consideration. central site and the environment by simply noting that in
order to calculate the amplitude for a transition from the left
to the right reservaoir, the first propagation has to be from the
left reservoir to the central site, and the last propagation from
In mesoscopic physics where the main feature of electhe central site to the right reservoir. The transition probabil-
tronic transport is its coherence, the transport description caity can therefore be rewritten as
be expressed in terms of the scattering properties of the me-
soscopic structure. The choice of model has been dictated by 1 ) , (¢ t t t
this feature, and in the following we shall study the quantum- Pori—pr(D)= F|Vpr| Vol fodtlfodtZJOdISJodt4
mechanical problem of transmission of an electron through a

andA , the coupling constant to mode.
The resulting Hamiltonian for system and environment,

Ill. TRANSMISSION PROPERTIES

region where it can interact with additional degrees of free- i i

dom. We wish, therefore, to calculate the transmission coef- xexp[ 7 €nr(t—ta) + gfp’,l(tftl)}
ficient for a particle emitted, say, from the left reservoir un- ) )

der the assumption that it propagates via the central site, ><<G’§(t4,t3)G§(t2,tl)>, (19

where it is allowed to interact with an environment, to the ) .

right reservoir. In accordance with the initial condition of an Where( )=tr(py, . ..) isshorthand for the trace with respect
electron impinging from the left reservoir, we can assume© the environmental degrees of freedom, weighted with re-
that at some initial time; the two subsystems, particle and SPect to the initial environment state, and

environment, are decoupled, so that the initial state is de- ~ R _ "

scribed by a separable statistical operator Ge(t,t')=—i6(t—t")(0[[ac(t),as(t")]|0) (19
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is the retarded Green’s operafoperator with respect to the expect to have a quasistationary state that decays exponen-
environmental degrees of freedpifor the central site dy- tially in time. To utilize this property of the electrodes we

namics as first discuss the lifetime for occupation of the central site in
M. (M the absence of an environment.
ag(t)=ef ace™ ! ) (16) In the absence of coupling to the environment the retarded
) AR
and |0) denotes the particle vacuum state. The advancefreens operator for the central sit€:, reduces to the
Green’s operator is given by Hermitian conjugation, c-number Green’s function, equaling the amplitu@g for
the particle to remain at the central site. The Fourier trans-
~A N _r~R/sr H iofi H
G (t,t")=[G(t D1, (170  formed amplitude satisfies the Dyson equation,
where T denotes Hermitian conjugation. In Etd), the ar- GCR(6)=gCR(e)-l-gs(e)EcR(e)Gs(e), (22)

bitrary initial time has been chosen at time zefre; 0.
In many cases of interest we do not need the full infor-
mation on the transition probability as a function of time. For

where the central site self-energy is given by

instance, if we are only interested in the average particle flow SRe)=> |Vp(,|zg§(,(e), (23
in a steady state we are only interested in the transition prob- po
ability per unit time, and describes the coupling of the central site to the reser-

voirs, as indicated by the appearance of the electrode propa-
(18) gators. A lower capital is used to designate a subsystem

Green’s function, implying that the electron is not allowed to
. . . » propagate in or out of the electrodes, i.e., its dynamics is
or the transmission coefficient for making a transition be-yetermined by the Hamiltonian with all connecting elements,
tween a state of_ energy in the left reservoir and a state of V,.,, set equal to zero.
energye in the right reservoir: In the absence of tunneling between the electrodes and the
central site we have for the isolated electrode Green'’s func-

T(e,€)=h> Wy p (e—€p) 8’ —€y). (19 tions
pp’

P, (t)
p’.l—p,r
Wpr | opr = Ilmf,

t—oo

Invoking the scattering approach for the description of trans- gg‘(r(e): . (24)
port properties for coherent quantum proce$ses have at €= €TI0
zero temperature the contribution to the conductance at ermnd for the central site Green’s function
ergy €',
2 R €)= — <. 25
e<a>=§§=wen, (20 W a0 ()
In the presence of coupling between electrodes and the cen-
where tral site the Dyson equation yields the central site Green’s
function in terms of the self-energy,
T(e')=f de T(e,€’) (21
° Gele) = (26

. .. - - _Ec_zs(é)'
is the total transmission coefficient, the probability to reach
the right reservoir for a state of energy in the left elec- The escape rate from the central site is given by the imagi-
trode. The factor of two is the spin degeneracy factor of thehary part of the self energy
electron.
F(e)=—ImEf(e)=72 |Vpo|*d(e—€py).  (27)
IV. THE WIDE-BAND APPROXIMATION po

If the hopping matrix elements vary slowly with energy in

We have in the previous section reduced the expressiofhe resonance regior~e., and the energy bands in the
for the transition probability to an expression that only in-reservoirs are wide so that also the electrode density of
volves the dynamics at the central site. However, since botBstes Ny(€)=2,8(e—€p,), has a weak energy depen-
tunneling and interaction with the environment are presenfjence, we can neglect the energy dependence of the escape
the dynamics is complicated and no closed expression for thgyte  and by analyticity we have
transmission probability can be found; that is, without any
further assumption no simplification is possible as the pho- R = de’ T'(€')
non average cannot be done explicitly. If we, however, as- 2c(e)= f_m7my (28)
sume that the widthgV of the electronic energy bands of the
electrodes are the largest energy in the problemwhich implies that the real part of the self-energy vanishes in
W>tw,,I, it is possible to obtain closed expressions forthe wide-band limit.
the transition probability for various cases of environmental The wide-band approximation simplifies the problem con-
states. In this wide-band limit an electron at the central sitesiderably as the time-dependent Green’s function becomes a
decays into a continuum of states in the electrodes, and weecaying exponential,
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If we for the moment neglect the coupling to the environ-

1z =R= 12 —_— 0’/\/\ ‘JV\-‘ N -
( ) ( {(H)I \%\ ) ment we have for the transition probability
< >= + + +..+ +...
—— LT N

ty =i 14 1 t t t tg
= — 2 2
P00 Vo Vo 2 s [ty [t "o,

FIG. 1. The Feynman diagrammatic representation of the decou- . )
4 9 P x Ui/t ep (ty=ta) +(ilf)ep (ta—t1)

pling of particle and environment dynamics for the amplitude cor-
reIator(G’é(t4,t3)G§(t2,t1)> in the wide-band approximation. The x @ (1) (eg=iT)(tp=tp) +(i/f)(ec+iT)(t3~ty)
double lines denote the full central site Green’s functions while the ’
single lines denote the central site Green’s functions in the absence (36

of coupling to the environment. The curly lines denote the correla- . . . .
tor of the environment operator. The integrations are readily done and we obtain for the tran-

sition probability per unit time

GE(t,t)=—i6(t—t")e (MDD (29) im P21 (D
Wy | pr= lim—————
and the Green’s function satisfies, for timest”>t’, the PRt t—o0 t
relation 2 )
Ry 1 R R S Nl Woall oo o) @
GR(LI)GE(T" ") =GR(Lt). (30) h (e — e 2+ T2 00 E0r ™ o).

This group property leads to a tremendous simplification ofor equivalently for the transmission coefficient
the interacting problem as the tunneling dynamics at the cen-
tral site and the environment dynamics decouple. If the 4T,

group property, Eq(30), is valid we have for the central site T(e.€')= (e —€e)2+T? d(e=e’)
amplitude correlations

~ ~ _ 2FIFr ' '
<G§(t4,tg)GcR(tz,t1)>=GcA(t4,t3)GE(t2,tl)z(t4,t3,t27t1), T Acle')d(e—¢€), (38)

(31

where we have introduced the influence function describin
the effect of the environment

where we have introduced the central site spectral weight
Yunction

-~ H 3 H 2 ! H I i 2F
Z(t4,t3,tz,tl):((Te<"ﬁ>f§4d‘X“))(Te*("ﬁ)fIl dx(tyy A€)=i1(GJ(e)—Gi(e"))= (€ —e)?+T2 (39
(32 ¢

with the environment variable in the interaction picture

X(t) =M Hutx e (1 Hs, (33 Lo=m 2 Vool e €po). (40)
andT and T denotes the time and antitime ordering opera-
tors, respectively. The decoupling of the particle and envi\We observe that the transmission coefficient has the expected

ronment degrees of freedom is visualized using Feynmafesonant character of the Breit-Wigner formiila.
diagrams in Fig. 1. In the absence of coupling to the environment we there-

Because of the group property, E®0), the central site fore have the contribution to the conductance at enefgy
dynamics has a special behavior: the lifetime of the central

and the left and right escape rates

2
site state is independent of the coupling to the environment, G(e')= 4e oy (41)
g . . ! 2 2 .
as the probabilityP(t) for the particle to remain at the cen- mh (€' —€)°+T

tral site after a time span if initially at the central site, is i i .
Having discussed briefly the uncoupled case, we now turn

P.(t)= (é@(O,t)éE(t,O)), (34) to calculate the influence functiahfor various environmen-
= - tal states. We shall invoke the assumption of a wide-band
and noting thafr e~ (/")Jod™X() js the interaction picture time width allowing for the decoupling expressed by Egfl), and
evolution operator for the bath, and consequently unitary, webtain in this approximation the following expression for the
haveZ(0t,t,0)=1. Therefore by Eq(31) we have for the transmission coefficient:
staying probability

T(e,e )= 1—3—2F|Frftdt ftdt ftdt Jtsdt
A R - = —
P.(t)=(Ga(01)GR(t,0)=e 'Y (35 (€,€") t'fl t ans ) ) Atz dts ), dte
which is independent of the coupling to the environnfent. 4 o,
. I%)e(t— Ih -
Before we go on to calculate the influence functidn XZ(tg,ta,tp,ty) et et
which contains all information about the influence of the x @~ (M)(ec=ID)(t=t) + (i) (ec+ID(t5=t) (4D

environment for various environmental states, we briefly dis-

cuss the transmission problem in the absence of coupling tm the wide-band limit we notice the integral of the transmis-
the environment. We shall explicitly assume the exponentiasion coefficient is related to the staying probability at the
form Eq. (29) for the decay amplitude. central site:
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In the following section we calculate the generating func-

: 5 T tional and the influence function for various environmental
states.
ty E t3 i "
t pob VI. THE INFLUENCE FUNCTION FOR TYPICAL
ENVIRONMENTAL STATES
Ca ' In the preceding section we showed that in the presented

model the influence functional refers explicitly only to the
FIG. 2. Closed time patlC extending from—« to +« along  environmental degrees of freedom and is characterized by a

C, and back again alonG,. single “force.” This simplifying feature will allow us to ob-
tain closed expressions for the influence function for typical
o 8nl'\[', (= environmental states.
de'T(e')= — dt P.(t), (43
— 0

A. Thermal environment
and we can therefore conclude that the integral ¢¢') is

unaffected by the coupling to the environment since the stay- h\(/a\fa I;]rstegls'fgr?;;;]te'sq;g?n C(;n;maor?eapthg;t'ﬁalTﬁ.'tsuggolr:j
ing probability P.(t) is unaffected. w Vi ! N9 - ud,

for example, be the case in question where the Hamiltonian
is thought to represent a resonant tunneling structure, the
V. CLOSED TIME PATH FORMULATION lattice degrees of freedom of the crystal acting as the heat
FOR THE INFLUENCE FUNCTION bath.
In order to calculate the influence of the environment on A heat bath is characterized by a single macroscopic pa-
the otherwise coherent quantum process, the task is to calc[@meter, its temperatufg, and the environmental state is in
late the influence function given in E€B2). The first step in this case described by the equilibrium statistical operator

achieving such a goal is to transform the operator expression o Ho/keT
into an analytical one. A general and convenient method for - = (47)
performing this transformation has been devised by Po=PT e~ TkeT

Schwingef The key point to note for employing this method
for the present purpose is to note that the influence functio
Z quite generally can be expressed in terms of a closed tim

The average of the generating functional is then Gaussian,
ielding the quadratic form

path generating functional provided the “force” is chosen i
properly as Z[f]=exp|—mfdrj dr' f(r)D(r,7")f(7')}, (48)
C [
Z(t41t31t21t1):<Tce_(i/ﬁ)fc de(T)X(T)>|f(T)=fO(T)1 (44) where
where C is the closed time path extending frome to D(r, )= — (T X(D)X(+)]) (49)

+ alongC, and back again alon@,, as illustrated in Fig.

2, andT. is the contour ordering symbol, ordering the envi- is the contour ordered bath Green’s function.

ronment operatorX(7) according to their contour label po- It is convenient for the physical interpretation to split the
sition on the contou€ (earliest to the rightandf°(7) is the ~ exponent appearing in the generating functional into real and
function on the upper and lower branches of the contouimaginary par

specified by

f(:I).(t) = B(t,—t)—0(t;—t), t=reC, Z[f]=exp{ —h—lzjm dtfoo dt’[Zf_(t)DR(t,t')f+(tI)
0 - — —w
PO=100) = ta—t)—a(t,—1), t=reC,.
(45 +f_(t)DK(t,t’)f_(t’)]], (50)

The closed time path generating functional
where

Z[f]E<Tce—(i/h)fcd7f(T)X(T)> (46)

=1 +
is therefore the quantity of interest. Fa(O=2[1(O=T2(V)] (5

The influence of the environment only appears throughand
the state of the environment in the generating functional, and
different environments can now be handled on an equal foot- DR(t,t")=—io(t—t"){[X(t),X(t")]) (52
ing corresponding to just substituting the proper environmen-
tal state, i.e., the corresponding statistical operator. is the retarded bath propagator, and

In the present formulation we note that corresponding to DX(t,t") = —i{({X(1),X(t)}) (53)
the influence of an environment on a given physical quantity ’ '
there corresponds a function, here denoted the propés the correlation or Keldysh bath propagétbr.
“force,” which when inserted into the generating functional  For the present thermal case we have for the retarded
completely specifies the influence of the environment. Green’s function
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h? @ Z(ty,t3,t,1) =ZR(ty,t3,t5,t) ZK(ty,t5,15,t,), (58
DR = — = grt—t') [ “do I(w)sine(t—t"), (tg 13 2.1). (ta,t3,t5,11)Z"%(ty,t3,t5,t,), (58) |

2 0 where the contribution from the retarded bath propagator is
(54 given by

where . ~
ZR(ty 13,15, 1) =AM 7R 14 5 1),

4 (59
Jw)= 7> Z AS(w—w,)= —zlmDR(w) (55) .
with
is the spectral function completely characterizing the influ- i (= Jw)
ence of the microscopic degrees of freedom of the bath. For ZR(t4,t3,t5,t1)= exp{ f do—7S,(ts,t3,t5,1)
the correlation function we similarly have (60)

DK(t,t’ )__I_f do J(w)COch—COSIu(t t').  (56) specified by the function

Su(ta,ts,ty,t1) = —sino(t,—t1) — sinw(tz—ty)
The Fourier transforms of the retarded and the correlation . .
propagator is connected according to the fluctuation- +sinw(ty—tz) +sinw(tz—ty)

dissipation theorem —sino(ty—t;) +sino(ts—tg), (61)

ho . . .
Ko y— 2i R and the effective coupling constant given by
D®(w)=2i ImD (a))COtth. (57)
J(w
The calculation of the influence of the thermal reservoir f do—— (62

on the transition probability has now been reduced to the
performance of simple integrals that are readily done and w&he contribution from the correlation bath propagator is

obtain for the influence function similarly given by
K 10> Jw) ho
Z (t4,t3,t2,t1):ex - Z 0 dw 2 COthz—C t4 t3 t2 1) (63)
|
where In terms of the independent variables we then obtain for

the transition probability per unit time
Co(ts,t3,t2,t1) =2—Cosw(t; —t3) — cosw(t, —ta)
L) P(1)
4

Wy | pr = IlmT

+cosw(t; —t3)+cosw(t,—

—Ccosw(t;—t,) —cosw(t,—t3). (64)
. . . \Y, Vo
The two real function€ , andS,, are the real and imaginary MJ dq'"f dr’ f dr Z (7,7 ,7")
parts of the complex function
fw(t4,t3,tz,tl)zz_eiw(tz_tl)_eiw(ts_t2)+eiw(t3_tl) XEX[{ h(fpr €. I)T, (ep’ - —iF)T,
+eiw(t47t2)_eiw(t47t1)_eiw(t47t3)'
i .
(65) +%(6p/’|_fc+|r)7’], (67)

Since the environment is in thermal equilibrium the influ-
ence functionZ(t,,t;,t5,t;) in fact depends only on three
independent variables:

where the influence function in terms of the three indepen-
dent variables again is split into the two distinct parts,

T=t,—ty, Z(r, 7 7)=2R(r, 7 7V (n ), (69)
E— (66) where

- i
T,,:t3_t21 ZR( 7, T’!T”):exp{ 4f dw ( 2) Sw(T T T”) ’ (69)

the above choice being determined by the original time la-
beling of the Green’s functions. with
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S,(7, 7, 7")=—sinw7+sinw 7’ —sinw 7" + sinw(7" — 7') 4 % o
T(e’):ﬁﬂFrJ' dT'f dr Z(7,7")
0 0

+sinw(7'+ 7)—sinw(7'+7—17'), (70
. i i
and the correlation part ><exp{ _ %(6, —e—iT) 7+ %(6, D)7
1 Jw 76
ZK(T,T,,T”)IGX[{——f dw—( 2)Cw(7',1",7"') (76)
4Jo ® where
fw > " — 7R 17K '
X cot Tl (72 Z(r, 7 )=2Z(7,7")Z%(7,7") (77)
® is specified by
where ~ ~
ZR(r,7)=2%(r,70)
C,(7,7,7)=2—cosw7r—Ccoswr —Ccosw7’
—exp{ - — (78
+cosw(7'—71')+cosw(7+7")
—cosw(7 +7—1"). (72 and the correlation part
The central site energy is shifted downwards according to Z4(r,7")=2"(7,7',0)
fix J d —2—J(w hz_
. =exp — — co
€= €. T; (73) N kB
similar to the negative polaronic energy shift. X[1—cosw(7— T’)]]. (79
For the transmission coefficient in the case of a thermal
environment we then get Since the environment is in the thermal equilibrium state, the
influence function for the total transmission coefficient only
. 2 S S . depends on one time variable, and the expression for the total
T(e €)= errr wdH o dr 0 dr Z(7,7',7") transmission coefficient can be reduced to a single integral
by introducing the mean and relative time variables:
i i .
><expl’—ﬁ(e—e')f”—%(e’—ec—lr)f . :7-+7-’
m L]
_ 2
I ~ .
+%(6 —eC+IF)T]. (74 t= g (80)

This expression has been studied perturbatively in the case 5P" the integration region we observe

the Einstein modél,and also in terms of elastic and inelastic " - w o
channels In the following we investigate the total transmis- f de dr _f dt| dt,, (81
sion coefficient in the thermal case and obtain explicit ex- - 2
pressions for various limiting situations. and performing the integration over the mean time we finally
. - obtain
1. The total transmission coefficient
If we are not interested in the energetics of the arriving T(e')= E Flrrfxdt o MUz )
particles in the right electrode, but only in the number of T Jo

arriving particles, only the total transmission coefficient is

relevant. Such a situation arises, for instance, in the case ~R r, .
where we can neglect any effect of the Pauli principle in the X2 (t)exp{ %(E Tt tec), (82)
right electrode, corresponding to the situation of a highly
biased left electrode in which case the left-going current isVhere
zero. In this situation the current of arriving particles is 5 i (= J(w)
ZR(t) =exp[ - —f dw—z—sinwt} : (83
4 0 w

Izefowde’T(e')fL(e'). (75) and

In such a case we only need the expression for the total ZK(t)=expl — Efwdw‘](w)comzh_w 1—coswt) .
transmission coefficient, which, according to E¢&4) and 4)o 2 kgT

(21), is given by (84)
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In the case where the oscillators all have the same fre-

. . . 03 T T T T T T T T
guency, the Einstein model, the spectral function takes the
form 0.25 - 1
2 0.2+ ]
0
J(w)= 57 Slo— wo), (85 T() 0.15 | .
relevant, e.g., to optical phonons. In this case, we deduce 0-1F i
from Eqgs.(82)—(84) the total transmission coefficient 0.05 - 8
.2 (= No |2 0028 62 2 0 2 4 6 8 10
T(E )— T fo dt exp{— ﬁ_(;)o [1+2n(w0)] (E’—gc)/th
Ao 2 i FIG. 3. The total transmission coefficienin units of
- —lwqt . .
X exp{(hwo [1+n(wo)Je 0 ] 4T\T, IT?) for the Einstein environment case. The parameters are

F:O.Zﬁwo, )\ozhwo, andkBT:hwo

X iz iwgt
ex hrog N(wg)€

L ) (n) nZO nP,(0) (hwo) : (92)
Xexp{—%(r—l[e’—ec)]t +c.c., (86)
2. Approximations conserving the integrated
Wheren(w) is the Bose function transmission probability
1 To illustrate the general features of the systematic and
n(w):E,kaT—_l. (87)  fluctuation influences of the environment we choose the

spectral function in the further calculations to have the form
Expanding the exponential functions containiafe' and

! s—1
e o', and performing the integration over we obtain Jw)= nw(ﬂ) ex;{ - (92)
We We
T(e')=4T\T _ Pn(T) (88) We note thatn is a dimensionless constant describing the
" (€' — €~ Nhw)*+T%’ coupling strength between the central level and the environ-

ment, andw, is the cutoff frequency for the oscillators.

where the temperature dependence is specified by There are several limits in which simple expressions

Ao |2 = 1 for the transmission coefficient may be worked out. These
Pn(T)=exp[ _(_0 [1+2n(wo)]] > — limits are the broad resonance limif>fiw., the strong-
hwg np.np=0 N1iNo: coupling limit, #>1, the high-temperature limit,

kgT>(1+1/p)hw., and the weak-coupling and low-
temperature limity<1, kgT<Aw./7n.
a. Broad resonance limitln the broad resonance limit,
(89) I'>%w., a short time expansion of the influence function is

nq )\O 2
(ﬁ_wo N(wo)
) o . _sufficient. The correlation part of the influence function is
the prime restricting the summation to the terms for whichtherefore given by

n;—n,=n. Transmission can take place with absorption or

emission of oscillator quanta giving rise to additional reso- K k(T) )

nance peaks, the functioR,(T) determining the relative ZH () =exp — —— 17, (93)
weight of the peaks. The energy dependence of the transmis-

sion coefficient is illustrated in Fig. 3. In particular, in the Which controls the other part to become
low-temperature limitkgT<#f wy, where the Bose function N

vanishesn(w)—0, we can ignore all terms containing pow- ZR(t) =exp{ —j —t}. (94)
ers ofn(w) in Eq. (89), and obtain at zero temperature 4

\o 2 1 No 2n
P,(0)= TR " faw, m(fi—wo =0 (90) (T)—Fd J(w)cot he (95
0, n<o, R th?

reflecting the possibility of an electron off resonance to tun-The total transmission coefficient, E(B2), is therefore in
nel from the left to the right reservoir via the central site bythe broad resonance limit given by

spontaneously emitting a phonon, and the impossibility of

gaining energy from a zero-temperature environment. We T(e')= zrlrrfmdt[e[K(T)IS]tz(1/ﬁ)[Fi(e’ec)]t+clc.].
note thatP,(0) is a Poisson distribution characterized by its Al Jo

mean value (96)

No N2

2
Trog [1+n(wo)]

X

Here « is defined as
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1 T T T 0-5 T T T T T T
09t 0.45
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FIG. 4. Transmission coefficiefiin units of 4I'\T", /T'?) for the FIG. 5. Transmission coefficieiin units of 4T, /T'?) for the
Ohmic environment case in the broad resonance liit% o, . Ohmic environment case in the strong-coupling limjt>1. The
The broad resonance approximati¢solid curve is compared to  strong-coupling approximatiofsolid curve is compared to the ex-
the exact resultdoty. The parameter choice is=1, 2kgT=T, act result (dotg. The parameter choice i%=10, Aw.=T,
and#zw,=0.1", which yieldsf2x(T)=0.101"2. 2kgT=T, and#?k(T)~14.2T2.

We note that the polaron shift has canceled out, reflecting K "(T) )
that the escape rate out of the central site is so fast that any ZA(H=exp — ——t7, (99)
real part environmental self-energy dressing effect is absent.
The integral in Eq(96) can now be performed and we where now
obtain

[2m 2T, BT 2
1y — T [2[(k(T)RS) [T —i(e —€Q)]
=N Ta {e

2
1—(13( W[F—i(é/—éc)]

k' (T)=

kT (= J
; f do @) (99)

0 w

which again controls the retarded part of the influence func-
tion to be

X +c.c.,

ZR(t) p{ ')\t] (100
=exp —i—tf.
97) 4

where®(z) is the probability integral, the error function. We
note that in the above case the resonant line shape is i
longer of the Lorentz type. The energy dependence in the 5 O\
broad resonance limit of the transmission coefficient in the T(¢’)= /,_77#
Ohmic cases=1, is illustrated in Fig. 4. k' (T) I'h

Similar to the two previous cases, the expression for the total
Bansmission coefficient is

[e[zfu’(mz)][ri(e’ec>]2

b. Strong-coupling limit.In the strong-coupling limit,
. ; L [ 2
n>1, we only need to consider the short-time limit, X 1_(1>( ——[—i(e'—€)]||+c.c.,
wt<1, because at larger times the influence function is ex- «'(T)h
ponentially small due to the short range of the correlation (101

part, ZK(t). Therefore, the correlation part of the influence .
function is for the present case the same as in(88), and ~ Which has the same form as EQ7), except thatx is re-
similarly the retarded part of the influence function is speci-Placed byx’. The high-temperature approximation is com-
fied by Eq.(94). The expression for the total transmission pared to the exact result in Fig. 6 for the parameter_values
coefficient is therefore the same as the one given inN®&g.  7=1, Aw.=I", and XgT=10I'. We note that the high-
However, the validity condition here is the strong-couplingt@mperature approximation gives a slightly lower transmis-
criteria, »>1, and there is no requirement on the escape rat&ion maximum than the exact calculation yields.
T'. We note again that in the short-time-limit approximation ~ d- Weak-coupling and low-temperature limit/hen the
the retarded part of the influence function has no effect, an§oupling is weak, <1, and the temperature is low,
the correlation part of the influence function is for the KsT<%wc/7, the situation is different from the previous
present case the relevant one. In Fig. 5 the strong-coupling@ses. The weak-coupling condition<1, forces the part of
approximation for the transmission coefficient is plotted ver-the influence function,Z®?, to equal unity at all times,
sus energy for the case of an Ohmic bath. We get in th&R(t)~ 1. We also note that there is no contribution from the
strong-coupling approximation for typical parameter valuesgcorrelation part in the short-time limit due to the weak-
7=10,hw.=T", and XgT=TI", a 5% too low transmission coupling condition. We need therefore to consider the long-
maximum that is displaced to a slightly higher energy adsime behavior of the correlation part. The reason for the con-
compared to the exact result. dition kgT<#A w./ 7 is to avoid the high-temperature regime
c. High-temperature limitWhen the temperature is high where only short times give a contribution.
enoughkgT>(1+1/%)hw., We can again use a short-time  The argument of the exponential in the expression for the
approximation correlation part of the influence function
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FIG. 6. Transmission coefficierfin units of 4\, /T'?) for the FIG. 7. Transmission coefficieffin units of 4T, /T'?) for the
Ohmic environment case in the high-temperature limit, Ohmic environment case in the weak-coupling and low-temperature
kgT>(1+1/9)fiw.. Inthe figure the high-temperature approxima- |imit, »<1 and kgT<#w./7. The weak-coupling and low-
tion (solid curvg is compared to the exact resilots. The param-  temperature approximatio(solid curve is compared to the exact
eter choice isy=1, fiw,=T, 2kgT=10I', and#?«’(T)=10I"2. result (dots. The parameter choice ig=0.1, #w.=100", and

2ksT=100"".

*  J(w) fw
's(t)EJO dw7cotr\m(l—cowt) (102 temperaturesT>4T/mykg, the resonance peak will be
strongly reduced. Therefore, although the coupling is weak,

approaches in the long-time limit>max(lw.,h/2kgT), the result is highly nonperturbative. The weak-coupling ap-
the expression proximation in the temperature rangel Arn<kgT

<hw./n is compared to the exact result in Fig. 7, for pa-

rameter valuey=0.1, Aw.=100", and XgT=100". For

this parameter choice the resonance peak is broadened ap-
(103  proximatively five times compared to the case where the en-
for th i ion 9s<2. If s>2. then|(t _vironment is absent. Even though in the case considered the
or the exponent region 9s<2. If s>2, thenl(t) ap coupling constant is not that small and the temperature is not

proaches a constant in the long-time limit, and there is thereéxcessively low, the deviation of the approximately calcu-

fore no contribution from the correlation part in this case. T.Olated transmission maximum compared to the exact value is

be more specific, we perform the integration for the Ohmic

) L no more than 10%.
case,s= 1 In the ang-nme limit,|,(t) = 7(7kgT/%)t, and We notice that the zeroth moment of the transmission co-
the Ohmic correlation part becomes

2kgT (= B
l(=7— t(wct)? Sf dx X 3(1-cox),
0

efficient,
7nkgT
ZK(t)= - t 104 > AnD\T
® exﬂ’ 4% ] (109 f de'T(e')=—F—, (109
Therefore, the total transmission coefficient is
is preserved exactly in all the approximations considered
.20 = 1 wkgT above. We also notice that the first moment of the transmis-
T(e)=—=1], duexp —zn——t sion coefficient,
! i(e'—€ I fwd”T’— 109
—g[r—l(e —€.)]tt +c.c. (105 m _ dele (€')=€. (109

The polaronic shift is no longer canceledz¥~ 1. Perform- s preserved exactly by all the approximations except for the
ing the integration we find for the total transmission coeffi-weak-coupling and low-temperature approximation where
cient the transmission coefficient is symmetric arotingd which

is anyhow close t@&. because the coupling is weak.

o Tett AN ’r,
Te)=w—F—%— (106) :
I' (' —€)?+T% B. The fluctuating level model
where ~ When discussing specific properties of a physical system,
it is often possible to neglect the quantum nature of the en-
mykeT vironment and represent the effect of the environment by a
Peg=I'+—F—. (107)  collective classical variable, which is appropriate when quan-

tum fluctuations can be neglected. A well-known example is
We note that the Lorentzian character of the resonant transhe excellent account of the atomic spectra obtained by dis-
mission coefficient is preserved in this limit, but the width regarding the quantum fluctuations of the electromagnetic
and the height of the resonance peak are different comparexhvironment, except for cases where degeneracies are only
to the case where the bath is absent. Clearly, at high enoudtfted by radiative corrections. A counterexample where the
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effect of the environment is of pure quantum nature is of The transmission coefficient for the stochastic environ-

course as easily recalled, that of stimulated emission. ment is obtained from
In the case where the degree of freeddirrepresents
environmental degrees of freedom collectively in the form of Al T, f q J dr 75(
an external classical potential, we can still use the presented T(e)= 7 7 727 )

method for calculating the influence. In this case the quantity
X just corresponds to a classical potential, and is not an
operator but just @ number. We shall in this section discuss
the case where the potentidlis a fluctuating quantity, the
fluctuating level model.

We assume further that the fluctuations are Gaussian, arwhere
therefore characterized by the lowest-order correlations

(X(1))=c,

Xex;){ﬁ( ec+|F)T——(e —ec—lr)r]

(115

zK(T,T')zexp[—%fx dtf dt’fo(t)K(t—t’)fO(t')},
(116
X = (XWNIXA) = (XA )N D=K(t=t"). (110 4

The influence of the now classical environmental degree of N .

freedomX is given by the generating functional expression, 2= z{[o(r—t)—0(-O)]-[0(r—t) - O0(— 7" +7-1) ]}
Eq. (44), however, now the brackets simply denote the 117
Gaussian average with respect to the fluctuating quantitynd the correlation pa#t now depends on the explicit form
X. We therefore have for the generating fUnCtional, which inof the correlatoiK. For examp|e, the high-temperature form
this case is just the probability theory contour characteristif the correlation functio® for a thermal Ohmic environ-

functional, ment,J(w) = yw, corresponds to @-correlator
i mh nkgT
Z[f]=ex —%de f(m)(X(7)) K(t—t’)ZTﬁ(t—t'), (118
Cc

the white noise case. The fluctuating level model thus only
BTy fdrf dr'f(r)K(7—7)f(7')}. (11)  captures the correlation patt’ of the thermal environment
and neglects the systematic retarded part, except for its av-

The reason we made the distinction in the previous section if@g€ influence.
For the fluctuating level model we therefore get for the

the effects of the environment as expressed in the split | e )
influence function in the Ohmic case,

2=27ZRzK, (112

1
o . ZX(r,7")=e kgT 119
where we distinguish between the retarded and correlation (7.7) xp[ ap "7 == (119
contributions, is that they represent two distinct influences of

and for the transmission fficien
the environment. The ter@R represents the systematic fric- d for the transmission coefficient

tion type and energy renormalization influence &t the r AT\ T
fluctuating part, including thermal as well as quantum fluc- T(e')=-2" ~—'r2 (120
tuations. For the thermal environment discussed in the pre- I' (e —&)2+T%

vious subsection, the two types of influence were not inde-

pendent, but related through the fluctuation-dissipation Lides the average energy shift and a reduction of the ’ﬁeak

theorem. that the resonance width of Eq. (41) is broadened accord-
We now compare the thermal qguantum environment W|th gto

the classical stochastic environment introduced above. It fol
lows directly in the presented real-time approach that the -
fluctuating level model is in one-to-one correspondence with N-Te=I+ 7 7kgT. (121
the fluctuational aspect of the thermal case with the prescrip-
tion for the correlation part We note that the transmission coefficient in this case is the
same as the one obtained for the thermal case in the weak-
DX(t,t")—>—2iK(t—t"), (113 coupling and low-temperature limit.

Comparlng the result to the uncoupled case, we notice, be-

and substitution of one foZR, ZR—1. In addition, we see
that the polaronic shift corresponds to the average displace-
ment of the environment Just as in the previous section we shall here consider the
case where the environment can be described classically. In
A\ addition we shall assume that in contrast to the previous
TH_C’ (114 section we know not only the probability distribution of the
potential, but in fact the actual potential. In the following we
obtained from Eq(76). shall therefore investigate the situation where we are able to

C. The external field case



53 INFLUENCE OF TYPICAL ENVIRONMENTS ON QUANTUM PROCESSES 10053

couple the electron to an external field at the central site. In

the present case of linear coupling it is sufficient to consider 0?1'3 L ]

the case where the central site energy level changes harmoni- 0.16 | -

cally in time. The external potential is therefore given by 0.14 .

012t .

X(t) = XoComwot. (122 e olr ]

0.06 | |

Such a situation could, for instance, be realized in the case 0.04 ]

where the Hamiltonian represents a small metallic grain with 0.02 . . ]

a single active level whose energy can be changed by an %1075 26 —1 2 0 2 4 6 8 10
external electric potential, and the grain being coupled to (¢ =€) [y

large metallic electrodes.
In the case where the influence of the environment is rep- FIG. 8. Transmission coefficiefiin units of 4I"\T', /T'?) for the
resented by the external potential given by EtR2) we  external field caseX(t)=Xqcoswgt. The parameter choice is

= @ (IM)XoSZ, di[f1(t)—fa(t)Jcoswpt

obtain for the influence function I'=0.Ziwy andXp=4fwy.
Z(tg,t3,tp,ty) =(Tce™ /MIATOXY 4 T(e,e')= 2F|l;rf°° d%’fmdr’fwdr Jo —XO [0, |
) Wﬁ e O O hwo ’T,’T,,T”

i [
iXo Xexp{—g(e—e’)r”—g(e'—ec—il—‘)r'
=exp[ —— (Sinwgty— Sinwgt,
h(l)o

[
+g(e’—ec+ir)7’]. (126)
+ Sinw0t3— Sinw0t4)] . (123)

If we had assumed that the external potential was a sine

This corresponds to the fluctuating level model for the cas€UNCtion. X(t) =XoSinwof, we would have obtained the same

where the potentiaX(7) is known with certainty to be given transmission coefficignt for NONzewy, but we would Of
by the expression in Eq122. course not have obtained a shift of the resonant energy in the

case ofwy=0. The total transmission coefficient is

' 4F|Fr * “ ' XO 0
T(e )ZTJ dTJ'O d7r'Jg ﬁ_a)o|f""'/'7”=0|

For the transition probability per unit time we then obtain
the expression

Vo [3Vy |2 (= g g 0
Wp’,l—»p,rz Wi#f dT//fo dT’fo dT | |
o xXexp — — (e —e,—i)7 +—(e' —e+il)7|.
i f f
><exp{ - %(ep'r— € )T (127
i i Noting that|f':°T, _o|?=4sirf(wo(7—7)/2), and using the
- %(Ep’,l_ec_lr)'r,'i_ %(ep’,l_ec_HF)T) summation formula for the Bessel functidg (Ref. 12 we
obtain the total transmission coefficiéht
. 1t [ XO wg .
thmffodtlexp{%a)_o(RefT,T’,T”Slnwotl T( ’)—4I‘F § Jﬁ(xolﬁ(x)o) (128)
T A (€ —ec—nhwg)?+T2"
+ ImeYOT,YT,,COSthl)], (124 The total transmission coefficient has Lorentzian side bands

at all harmonics ofi wg with a relative weight determined by
the Bessel functions, and maximal peaks in the spectrum at
n~=*Xqg/hwy. The transmission coefficient is plotted for
the parameterk = 0.2h wy andXg=4% wq in Fig. 8. For this

where we have introduced the function

£, =1—glworelwort ) _gloolm+7'=7) (125 parameter choice the first sideband is almost missing because
v Xo/hwq is close to the first zero of the first-order Bessel
function.

We now calculate the integral ovéy in Eq. (124 by
expanding the exponential before performing the integration,
and therefore assume that, is nonzero. The case of zero
wq corresponds to a constant external potendk) =X, In the following we shall investigate the model for the
which only yields a trivial shift of the resonant energy. The environment in the coherent state. Such a model may de-
transition probability per unit time can now be expressed ascribe transport through a quantum dot coupled to an envi-
an integral involving the zeroth-order Bessel functidp,’!  ronment of coherent phonoms.

D. Coherent state environment
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The coherent state has the following representation ithe zero-temperature limit of the previously introduced bath

terms of the vacuum sta{®) of the environment: propagatoD(7,7") for the considered mode. If we therefore
1 N insert the proper “force”f® according to the prescription
|¢) =N, exp{#by}|0), (129 Egs.(136) and(137) we obtain the influence function for an
where environment in a coherent state
N¢=exp[|¢|2} (130 Z(ty,t3,12,t1) =Z[ fo]
is the normalization factor. =Zr-o(ts,t3,t2,t1)
The state of the environment is then a pure state and the N
statistical operator for the environment reduces to the projec- X exp{ 2i —Olm{ (e 1@ot2— g iwoly
tion operator hwg

p=Py=)(4]. (133 bt givot))

To calculate the influence of the environment in the case ] }
of a coherent state we therefore need to evaluate the followd€re Zt-o denotes the influence function for the thermal

. (140

ing expression for the influence function: case with the temperature set equal to zero, that is, the
ground-state case.
Z(ty,tg,t5,t1)=2[1°] Exploiting the observations already made for the external
. . field case we obtain the following expression for the trans-
=N, (0[exp{ ¢* bo} mission coefficient:
X(Te™ MITX(0) expy gL 0). 2I\T, (= - CI
T(e,e')= f dT"f dr'f dr Zi—o(7, 7", 7"
132 (€)== | d7"| dr' | drZroo(r,7,7)
The bracket in the definition of the generating functional 2)\o| b| g i N
corresponds therefore in this case to taking the expectation X Jo hwg L s plee )7
value with respect to the coherent state: ' '
i e,
Z[f]=(Tge  MIdr DXy = ( | T e~ (MIdrH(X(7)] ) - g(e —€.—ir)7'+ g(e - 6C+IF)T} ,
_ N;l<0|e"’* boTce_(i/ﬁ)fchf(T)X(r)e¢b$|O)_ (133 (141

The matrix element appearing in EG:33 is most easily where the function“:’oT,’T,, is the same as the function intro-
calculated by introducing the single mode generating funcduced in Eq(125).
tional The coherent state case shares features with both the ther-
mal and the external field cases. The coherent state influence
Z[f,f*]:<Tce*(i/ﬁ)fcd”\o(f*(T)b0(7)+f(7)b3(7))>_ (134  function consists of a factor equal to the zero-temperature
] ) ) _ Einstein model influence function, which describes the sys-
We then notice that we can rewrite the generating functionalematic influence and quantum zero-point fluctuations, and in
of interest as addition a factor identical to the external field influence func-

. ~ tion.
_ —(ilh) [ drf(T)X(7) _
Z[f]=(¢p|Tce "Me |¢)=2[f,f*] (139 For the total transmission coefficient we get
provided we substitute into E4134)

AT\T, (= (= 2Nol |
T(e')= ﬁlzrfodTJ'OdT'Jo< 0|¢)||f° |)

?(r):f(r)ﬂh%wr) (136 -, g Tr =0
and xexp{ —(ﬁ—::o) (1—e“”0<77'))]
?*(r)=f(r)—iﬁf—:5'(r), (137 Xex;){—fii—(e’—%c—if)r’-i-%(6’—Ec+ir)r].
where 6'()(7) is a & function on the uppetlower) part of (142

the contour, and vanishes on the loweppe) part.
The single-mode generating functional involves a Gauss
ian average and is given by the quadratic form

Performing a calculation similar to the one for the oscillatory
level model we get a simple formula for the total transmis-
sion coefficient

Z[f,f* ] — e*(i/ﬁz)fcdffcdr')\(z)f*(T)B(T,‘r')f(r'), (138)

) Qn
whereB is the single-mode Green’s function T(e)=4T T, X (143

N (€' — o~ Nfiwg)2+ T2
B(7,7')=—i{0|Tc(bo(bi(7)[0), (139  where
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FIG. 9. Transmission coefficiertin units of 4I'\T", /T'?) for the
coherent state environment. In diagrae) we have chosen
I'=0.2%hwgy, Ng=fwgy, and|¢|=1. In this case the transmission
curve resembles the one obtained for the Einstein model; see Fig.
In (b) T=0.2hwgy, No=hwy, and|¢|=2. In (c) T'=0.2hwy,
Ao=0.2hw,, and|¢p|=10. The shape of the curve in diagrdn)
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H=H¢+Hy+H,, (145

but now the sample Hamiltonian corresponds to two levels:

He= >, eala.. (146)
c=1,2

The tunneling can take place through either level with differ-
ent couplings

H,= pEC {Vp.o.c@iap o +H.C}. (147
The interaction takes the form
Hi= > alaX., (148)
c=1.2

where the environment operator depends on the level
through the coupling constant

XC:E )\a,c{b:rz,c'l' ba,c}1 (149

o
and we assume a situation where the double-barrier struc-
tures are coupled to separate environments,

Hp= E

c=1.2a

fiwa{bl D+ 3} (150

In order to have an external parameter to vary we envis-
age an Aharonov-Bohm type situation by piercing the ring
with a magnetic flux®d so that the propagators change ac-
cording to propagation around the different arms of the ring
according to

GTHe(ilz)‘b@OG?, Ggﬁe*(i/Z)(D/@oGzR' (151)
The transmission probability given by E@.1) now consists
of transmission through either arm and to accommodate this
two-level situation Eq(14) is changed into

resembles the one obtained in the external field case; see Fig. 8. 1
Pp’,lﬂpr(t): P 2 Vp',l,cl,V;,r,czvp,r,csvzr,|,c4
C1,C2,C3,Cy
o1 2K 2
Qn=e’("o/ﬁwo)22 il Ao Jﬁ—k Aol ¢ . (144) t t t t
k=0 k! ﬁwo ﬁwo X dtl dtz dt3 dt4
0 0 0 0
In the limit ¢#=0, we, of course, recover the zero- i i
temperature Einstein model result, £§0). In the limit of Xexpl’ %6p,r(t2_t3)+ %6p’,|(t4_tl)]
No—0, ¢—0, and\y|p|=const, we recover the classical
oscillatory level model result, Eq128). This crossover be- ~ A ~“R
havior is illustrated in Fig. 9. X<Gc4ycs(t4’t3)G°z*Cl(t2’t1)>' (152
where
VII. SUPPRESSION OF QUANTUM INTERFERENCE
AR _ _ 2 at
In the following section we investigate how the different e, ey (t2: 1) = ~16(tz t1)<0|[aC2(t2),acl(tl)]|0) (153

environments influence the phase coherence in a quantug,q
interference setup. We envisage the situation where two reso-

nant levels coupled to environments are placed in parallel

and transport can take place through eitfiek physical re-

G/cz cy(larts) = [653 e (ta:ta)]*

alization could be double-barrier structures situated on the
two arms of a ring coupled to two reservoirs. The Hamil-
tonian still has the form

=i60(t3—t,)(0|[&,(t4),A] (13)]]0).

(154
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In the following we shall neglect all terms except those for The transmission probability given by E@.1) then con-
which c,=c5; andc,=c;. This is justified if the two reso- sists of the transmission probabilities for transmission
nant levels have an energy difference larger than the width ahrough either arm and an interference contribution:

the levels. Here we simply implement it corresponding to

propagation taking place through either arm.

Poipr(D= 2 Pu(p,p’ 1)+ Pin(p,p',), (155
c=1,2

where

, |V’Ic| |Vprc|2
Pc(p,p ,t)— dtl dt2 dt3 dt4eX Gpr(tz t3) Gpl |(t4 tl)

X Gé(tmts)GcR(tz 1) Zc(ty t3,t0,t) (156)

and the interference term is given by

1 t t t t i i
Pint(p,p’,t)= va',l,1V§,r,1Vp,r,2V;r,|vzjodtlfodtzfodtsfodtztexl){ %fp,r(tz_ts)"‘ gfp',|(t4_t1)}

X Gh(ts,t3)GR(t2,11)Z1(0,01t5,t1)Z,5(14,t5,0,0+C.cC. (157

We now have an influence function for each of the two dif-where p=27®/d is the relative phase difference due to

ferent environmentsZ, and Z,, corresponding to the two the external flux, and’; and T, are the total transmission

different arms of the interferometer. For the transmission coeoefficients for the individual arms, and specified in the pre-

efficient we now have according to Eq4.8) and (19 vious sections. The decay rates, whose energy dependence
can be neglected in the wide-band limit, are defined as

h
T(e,€)=1lim — X Py pr(0)8(€' — €y 1) 8(e—€py)

t—oo t p.p’ ’ ‘ ' ‘ Fe=TgtTyg (160
’ ’ and
= Tole,€)+Tiy(e€). (159
c=1.2
The calculation of the total transmission coefficient, speci- Fclcza E)ZWZ V’Sacleacz S(€= €py)- (161)

fied in EQ.(21), in various limits is similar to what has been
calculated in Sec. VI. For example, in the absence of an

environment we get for the total transmission coefficient ~ To illustrate the special features of the suppression of phase
coherence in the present model, we discuss the cases of ther-

IT 12| T 541] mal bath, fluctuating level, classical field, and coherent state
T(e")=Ti(e)+To(e)+2VT1(€')To(€")—meeere= environment below.
1—‘lll—‘lrl—‘ZIl—‘Zr
Iy I, A. Thermal bath and fluctuating level cases
X cos ¢—arctan—— t+arctan——
€€ € € The transmission coefficient through either arm we ob-

tained previously. For the interference term, we have the ex-

+argl 155y |, (159  pression

2 R oo oo o0 ~ ~
Ti(e, €)= We"f’rmrzﬂ fﬁwdr”fo d7’ fo d7 Z,(7,0,0Z,(0,7,0)

i i . i .~
Xexp[ — g(e— 6’)7‘"]exp[ — g(e'—ez—irz)r’}exp{ + %(6’—61+IF1)T +c.c., (162

where the influence function corresponding to sitenters as
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7 (70,0 = ifmd () 1Fd Il ot (1 163
<(7,0,0=ex ~), Cha SiNw T eX ~a), wTCOchkT( —CcoswT) {, (163

and the central site energies for each arm are shifted dowrthe present model interference is thus hypersensitive to the

wards according to presence of the thermal environment, and in a dramatic fash-
ion displays the equivalence of dissipation and loss of phase

= oM (164  Coherence. o N
R We can also calculate the transmission coefficient for the

case of fluctuating levels. We assume that eachgitd, and
c=2, is coupled to separate classical fluctuating environ-

> Jw) ments, represented by the variabbkgt), c=1,2, respec-
Ne= fo do ,

with the negative polaronic energy shift

(165 tively. Analogously to the previous thermal bath case there
are contributions to the transmission coefficient from trans-

being site-dependent through the spectral function mission through either arm, and there is an interference con-

tribution specified by Eq(168), except for the thermal influ-

w

4 ence function being replaced by
Jo(@)= 372 N cd(w—w,). (166
a - - 1 T T
In the course of the derivation we have noted that Zc(T'O’O):Zc(O,T,O)ZeXP[ - Wfo dtf0 dt’K(t—t )],
~ ~ 169
ZC( T,0,0):Z:(O,T,O), (167) ( )
where
which follows from Eq.(17). The interference contribution
to the transmission coefficient is seen to have the form Kc(t,t')=<[xc(t)—<Xc(t)>][xc(t')—<Xc(t')>])-( )
170
Ti(€ €)= izeisbrlzpm S(e— e’)fxdT’zz(O,T’,O) As in the thermal case, the interference contribution to the
f 0 transmission coefficient is completely suppressed by dissipa-
tion.

i ©
Xexp — (e —e—ily)7 f dr Z7(0,7,0
p{ ﬁ( 2 2)7 ’ 0 721(07.0 B. External field and coherent state cases

In the case where the energy levels change harmonically
7 +c.c. (168 in time with the same frequency
We notice that the interference term vanishes unless the en- Xo(t) = XcCosmot, 173
ergy of the particle is conserved. Any energy exchange wittbut with different coupling strength, we obtain for the inter-
the thermal environment thus destroys the interference. Iference term

i -
Xexp{ _(E,_él"‘irl)T

Tim(e_e,):W_ﬁgrlZFZHJ,wd7J,fO dT/ fo dT eXp|_g(E_ E’)T”]exp{_%(é,_€2_|rz)7/]

i 1t i ° ©
xex;{g(e’—elﬂrl)rl Iim?J dtlexq’g(Reg ° Sinwot; +Img 0 coswoty){+c.c., (172
to 0 7T, T ,T
|
where we have introduced the function 2¢i® @ P @ ”
Tint(eael):? 1—‘|2rl_‘2].|JA dTﬂf dT’f dT J0(|g7_(;.r Trrl)
m —o 0 0 T
W, Xl . x2 : ”n B " ! | |
0 - = _ @logT ¢ (alog(7+ 7)) _ plog(t+7—77) "o , . ’
9™ g LT T g (8 e )- XeXp{—%(e—e)T — (e —ez—|r2)f]
a73
i
X — (€' —€+i +c.c.
Upon performing the integral ove we obtain exp{ ple e |I‘1)7} ¢.c (174
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Change in energy of the particle due to interaction with thedistributed stochastic variable. The fluctuating level model
external field does not destroy the interference in accordanogas shown to only capture the correlation part of the influ-
with the notion that such a nondissipative process does n@nce of the thermal environment, as the fluctuating level
lead to suppression of phase coherence when time reversalodel neglects the systematic part except for its average in-
symmetry is unbroken. fluence. We find in this case that the total transmission
Carrying out a similar calculation for the coherent coefficient is a Lorentzian with its width temperature broad-
state case, we find a similar qualitative behavior forened.
the interference term. Exchange of one quantum does We studied the effect of a harmonically varying external
not change the coherent state and interference is ndteld, and found the heights and widths of the Lorentzian
destroyed. sidebands at all the harmonics of the classical force.
For the coherent state case we also obtain a closed expres-
sion for the influence function, and we showed that the co-
VIII. SUMMARY AND CONCLUSION herent state case is an intermediate situation sharing features

) ~ of both the zero-temperature Einstein case and the external
We have developed a functional method to study the infig|d case.

fluence of various environments on quantum tunneling, and Finally we studied the suppression of quantum interfer-
shown that the effect of the environment on the transmissioRpce by considering a simple model of two resonant levels
probability, specified by the influence function, is describedsjiyated on the two arms of a ring connected to two external
by the value of a certain generating functional. The state ofeseryoirs. The quantum interference was monitored by hav-
the environment only occurs explicitly in the expression foring the ring enclosing a magnetic flux. When calculating the
the influence function through the appearance of its statistiransmission probability we obtained contributions corre-
cal operator, thereby allowing a unified discussion of thesponding to tunneling through either arm and an interference
influence of environments on phase coherence and theregntribution. We found that the interference term vanishes in
on the transmission properties. An advantage of the approaghe thermal bath and fluctuating level cases even for the
is that different environments are treated on an equal footing3|ightest energy exchange between system and environment.
thereby simplifying comparison of similarities and differ- The model thus represents a case where dissipation com-
ences. . _ . pletely destroys quantum interference. In the case of a
_ We have calculated the influence function for various enyondissipative environment, e.g., a classical force, there is no
vironments and parameter regimes using the developegss of phase coherence, and there is therefore always an
nonequilibrium generating functional technique. In order tOjnterference contribution, even if energy is not conserved in
obtain analytical results we have concentrated on simplgne transition.
resonant tunneling, and invoked the wide-band approxima- | conclusion, we have demonstrated the efficiency of the
tion. In the thermal case we obtained analytical results foHeveIoped nonequilibrium generating functional technique

the broad resonance limit, the strong-coupling limit, thefor evaluating the environmental influence on coherent quan-
high-temperature limit, and the weak-coupling and low-tym processes.

temperature limit. The short-time approximation used in the

broad resonance, strong-coupling, and high-temperature lim-

its, and the long-time approximation invoked in the weak-

coupling and low-temperature limit were numerically dem- ACKNOWLEDGMENTS

onstrated to be good approximations. For the thermal case

we discussed the closed expression obtainable for the Ein- We (P.A., J.R) acknowledge stimulating discussions with

stein model. Karl Hess and Tony Leggett. This work was supported by the
We studied the effect of a classical fluctuating en-Swedish Natural Research Council through Contracts No.

vironment on the tunneling process, the fluctuating levelF-AA/FU 11084-302(P.A.) and No. F-AA/FU 10199-306

model. The environment is here described by a Gaussiafl.R).

13. Bardeen, Phys. Rev. Le€, 57 (1961). (1989; Y. Zohta, Solid State Commuf2, 931(1989; W. Cai,
2K. Huang and A. Rhys, Proc. R. Soc. London Ser2@4, 406 T.F. Zhang, P. Hu, M. Lax, K. Shum, and R.R. Alfano, Phys.
(1950; P.W. Andersonibid. 124, 41 (1961); U. Fano,ibid. 124, Rev. Lett.65, 104(1990; L.Y. Chen and C.S. Ting, Mod. Phys.
1866 (1961); J.N.L. Connor, Mol. Phys15, 37 (1968; C.-O. Lett. B 4, 1077(1990; R. Berkovitz and S. Feng, Phys. Rev. B

Almbladh and P. Minnhagen, Phys. RevlB 929(1978; M.Y. 45, 97 (1992.
Azbel, Solid State Commur5, 527 (1983. 5R. Landauer, IBM J. Res. Dett, 233 (1957, Philos. Mag.21,
3L.I. Glazman and R.I. Shekhter, Zhk&p. Teor. Fiz.94, 292 863(1970; M. Blttiker, Phys. Rev. B33, 3020(1986.
(1988 [Sov. Phys. JETB7, 163(1988]. ’G. Breit and E. Wigner, Phys. Re49, 519 (1936.
4N.S. Wingreen, K.W. Jacobsen, and J.W. Wilkins, Phys. Rev. 8J. Schwinger, J. Math. Phy&\.Y.) 2, 407 (1961).
Lett. 61, 1396(1988; Phys. Rev. B40, 11 834(1989. 9A. Schmid, J. Low Temp. Phyg9, 609 (1982.
SM. Jonson, Phys. Rev. B9, 5924 (1989; B.Y. Gelfand, S. °We follow the notation of J. Rammer and H. Smith, Rev. Mod.
Schmitt-Rink, and A.F. Levi, Phys. Rev. Le2, 1683(1989; Phys.58, 323(1986, where an account of the properties of the

W. Cai, T.F. Zhang, P. Hu, B. Yudanin, and M. Lakid. 63, 418 contour-ordered Green’s function is given.



53 INFLUENCE OF TYPICAL ENVIRONMENTS ON QUANTUM PROCESSES 10 059

111.s. Gradshteyn and I.M. RyzhiKable of Integrals, Series and #J.C. Chiang and Y.C. Chang, Phys. RewB 7140(1993; Y.V.
Products(Academic, New York, 1980 Nazarov, Physica B89 57 (1993.

12A.D. Stone and P.A. Lee, Phys. Rev. Léit, 1196(1985. 15A.V. Kuznetsov and C.J. Stanton, Phys. Rev. L& 3243

13N.S. Wingreen, Appl. Phys. Letf6, 253 (1990). (1994; Phys. Rev. B51, 7555(1995.



