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We present the results of studying the influence of different environmental states on the coherence of
quantum processes. We choose to discuss a simple model that describes two electronic reservoirs connected
through tunneling via a resonant state. The model could, e.g., serve as an idealization of inelastic resonant
tunneling through a double-barrier structure. We develop Schwinger’s closed time path formulation of
nonequilibrium quantum statistical mechanics, and show that the influence of the environment on a coherent
quantum process can be described by the value of a generating functional at a specific force value, thereby
allowing for a unified discussion of destruction of phase coherence by various environmental states: thermal
state, classical noise, time-dependent classical field, and a coherent state. The model allows an extensive
discussion of the influence of dissipation on the coherent quantum process, and expressions for the transmis-
sion coefficient are obtained in the possible limits.

I. INTRODUCTION

The progress in fabrication of submicron structures has
led to a wealth of new structures whose transport properties
are dominated by the feature that electronic transport through
the structure takes place coherently. However, additional de-
grees of freedom in addition to those of single electrons are
present and it is of importance to account for their influence
on coherent processes. In the following we shall investigate
how different environmental states influence the quantum
process of main interest. Although we shall choose a model
that is directly relevant to transport properties of a double-
barrier structure or transport through a quantum dot, the
technique we develop is of general interest.

The paper is organized as follows: In Sec. II we model the
system whose transport properties will be studied, and in
Sec. III we show how to describe the transmission probabil-
ity of a structure in terms of Green’s functions. In Sec. IV we
discuss the main approximation, which will allow an analyti-
cal description of the influence of dissipation on the trans-
mission properties. In Sec. V we introduce the closed time
path formulation and develop the description of the destruc-
tion of phase coherence in terms of a generating functional
technique, and in Sec. VI we discuss the effects of different
environmental states: thermal and coherent states, the exter-
nal field case, and the fluctuating level model. We shall for
all these cases derive closed expressions for the transmission
probabilities, and compare the results in order to notice simi-
larities and differences in the influence of different environ-
ments. In Sec. VII we discuss destruction of phase coherence
using the generic Aharonov-Bohm situation. Finally in Sec.
VIII we summarize and conclude.

II. THE MODEL FOR STUDYING DESTRUCTION
OF PHASE COHERENCE

In this section we shall set up a minimal model describing
the dissipative feature of the general quantum transport prob-
lem. The simplifications are introduced in order to be able to
treat analytically the influence of environments on the trans-

port process. We shall study the general problem of quantum
transport where electronic current reservoirs provide elec-
trons to an active region where interaction with an environ-
ment can take place. The reservoirs correspond in reality to
large electrodes, and we can describe the Hamiltonians for
the left and right electrodes in terms of their electron energy
levels:

Hs5(
p

ep,sap,s
† ap,s . ~1!

The quantum numberp labels the momentum of the electron
states,s5 l ,r refers to the left and right electrode, respec-
tively, andap,s

† creates particles in states with these quantum
numbers with the corresponding energyep,s .

The central active~sample! region can in the absence of
coupling to the reservoirs be described by a Hamiltonian or
equivalently its energy levels. The single-particle-energy at
the central site, labeledc, is ec corresponding to the term in
the Hamiltonian

Hs5ecac
†ac . ~2!

In the following we shall consider a model that allows
extensive analytical calculations, and therefore restrict the
number of levels relevant in the central region to one. Even-
tually we shall consider also the case of two levels. In the
event that the reservoirs are connected through the central
site, electrons are transmitted between them. Such a situation
can quite generally be modeled by transfer matrix elements,
Vp,s , between the reservoirs and the central region. The cou-
pling of the electrodes to the central site is therefore de-
scribed by the tunneling Hamiltonian1

Ht5(
ps

$Vpsac
†aps1H.c.%. ~3!

The transfer matrix elements are here considered to be phe-
nomenological parameters, but can of course for any chosen
microscopic model of say a double barrier be expressed in
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terms of the potential profile and the carrier mass. The
HamiltonianHe for the electronic system of interest is there-
fore given by

He5Hl1Hr1Hs1Ht . ~4!

Within the sample region we allow for interaction with an
environment. For our purpose we can quite generally assume
a bosonic environment with a corresponding Hamiltonian
Hb that has the standard normal mode form

Hb5(
a

\va$ba
†ba1 1

2 % ~5!

in terms of the bosonic creation and annihilation operators,
ba
† andba .
For the coupling of an electron at the central site we take

a linear coupling to the normal modes

Hi5ac
†acX, ~6!

whereX is the collective environment displacement operator

X5(
a

la$ba
†1ba%, ~7!

andla the coupling constant to modea.
The resulting Hamiltonian for system and environment,

H5He1Hb1Hi , ~8!

has been discussed in a variety of contexts,2 most recently in
the context of inelastic resonant tunneling,3–5 where the
model has served as a simplified description of the influence
of interaction with phonons on the transport properties of a
double-barrier structure. In the present account we shall not
only discuss a thermal environment, but a variety of environ-
mental states and their influence. A purpose of the paper is to
present a calculational scheme that allows a unified descrip-
tion of arbitrary environments, and in a direct way exhibits
the physical content of a model so that calculations within
more realistic models can be made tractable. We now pro-
ceed to describe in detail the transmission properties of the
system under consideration.

III. TRANSMISSION PROPERTIES

In mesoscopic physics where the main feature of elec-
tronic transport is its coherence, the transport description can
be expressed in terms of the scattering properties of the me-
soscopic structure. The choice of model has been dictated by
this feature, and in the following we shall study the quantum-
mechanical problem of transmission of an electron through a
region where it can interact with additional degrees of free-
dom. We wish, therefore, to calculate the transmission coef-
ficient for a particle emitted, say, from the left reservoir un-
der the assumption that it propagates via the central site,
where it is allowed to interact with an environment, to the
right reservoir. In accordance with the initial condition of an
electron impinging from the left reservoir, we can assume
that at some initial timet i the two subsystems, particle and
environment, are decoupled, so that the initial state is de-
scribed by a separable statistical operator

r i5Pp8,l* rb , ~9!

wherePp8,l is the projection operator describing an electron
in the left electrode in momentum statep8

Pp8,l5up8,l &^p8,l u. ~10!

The state of the environment is presently arbitrary and de-
scribed by the statistical operatorrb . As regards the trans-
mission problem, given the above initial state, all informa-
tion can be extracted from the probability,Pp8,l→p,r(t), to
find the electron in the right electrode at timet with momen-
tum p. This conditional probability is given by the expres-
sion

Pp8,l→p,r~ t !5Tr„r iU
†~ t,t i !Pp,rU~ t,t i !…, ~11!

wherePp,r is the projection operator

Pp,r5up,r &^p,r u ~12!

corresponding to the assumed final outgoing particle state
with momentump in the right electrode, and

U~ t,t i !5e2~ i /\!H~ t2t i ! ~13!

is the evolution operator corresponding to the total Hamil-
tonian. The trace with respect to all the degrees of freedom is
denoted by Tr. The absence of any environment operator
discriminating the final states of the environment is in accor-
dance with the typical experimental condition pertaining to
the electronic conduction process, namely, that the environ-
mental degrees of freedom are not observed.

For an electron to propagate between the reservoirs it first
has to enter the sample region and, last, exit it. In the event
we only explicitly consider interaction with the environment
in the sample region, we can exploit this feature and intro-
duce a discussion in terms of the effective coupling between
reservoirs and the sample region. The chosen model has this
feature to the extreme. In the assumed model the electron
only couples to the environment at the central site. We can
therefore express the transition probability in a form that
explicitly only involves the dynamics of the electron at the
central site and the environment by simply noting that in
order to calculate the amplitude for a transition from the left
to the right reservoir, the first propagation has to be from the
left reservoir to the central site, and the last propagation from
the central site to the right reservoir. The transition probabil-
ity can therefore be rewritten as

Pp8,l→p,r~ t !5
1

\4uVpr u2uVp8 l u
2E

0

t

dt1E
0

t

dt2E
0

t

dt3E
0

t

dt4

3expH i

\
ep,r~ t22t3!1

i

\
ep8,l~ t42t1!J

3^Ĝc
A~ t4 ,t3!Ĝc

R~ t2 ,t1!&, ~14!

where^ &5tr(rb . . . ) is shorthand for the trace with respect
to the environmental degrees of freedom, weighted with re-
spect to the initial environment state, and

Ĝc
R~ t,t8!52 iu~ t2t8!^0u@ac~ t !,ac

†~ t8!#u0& ~15!
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is the retarded Green’s operator~operator with respect to the
environmental degrees of freedom! for the central site dy-
namics as

ac~ t !5e~ i /\!Htace
2~ i /\!Ht, ~16!

and u0& denotes the particle vacuum state. The advanced
Green’s operator is given by Hermitian conjugation,

Ĝc
A~ t,t8!5@Ĝc

R~ t8,t !#†, ~17!

where † denotes Hermitian conjugation. In Eq.~14!, the ar-
bitrary initial time has been chosen at time zero,t i50.

In many cases of interest we do not need the full infor-
mation on the transition probability as a function of time. For
instance, if we are only interested in the average particle flow
in a steady state we are only interested in the transition prob-
ability per unit time,

wp8,l→p,r5 lim
t→`

Pp8,l→p,r~ t !

t
, ~18!

or the transmission coefficient for making a transition be-
tween a state of energye8 in the left reservoir and a state of
energye in the right reservoir:

T~e,e8!5h(
pp8

wp8,l→p,rd~e2ep,r !d~e82ep8 l !. ~19!

Invoking the scattering approach for the description of trans-
port properties for coherent quantum processes6 we have at
zero temperature the contribution to the conductance at en-
ergy e8,

G~e8!5
2e2

h
T~e8!, ~20!

where

T~e8!5E
0

`

de T~e,e8! ~21!

is the total transmission coefficient, the probability to reach
the right reservoir for a state of energye8 in the left elec-
trode. The factor of two is the spin degeneracy factor of the
electron.

IV. THE WIDE-BAND APPROXIMATION

We have in the previous section reduced the expression
for the transition probability to an expression that only in-
volves the dynamics at the central site. However, since both
tunneling and interaction with the environment are present
the dynamics is complicated and no closed expression for the
transmission probability can be found; that is, without any
further assumption no simplification is possible as the pho-
non average cannot be done explicitly. If we, however, as-
sume that the widthsW of the electronic energy bands of the
electrodes are the largest energy in the problem,
W.\va ,G, it is possible to obtain closed expressions for
the transition probability for various cases of environmental
states. In this wide-band limit an electron at the central site
decays into a continuum of states in the electrodes, and we

expect to have a quasistationary state that decays exponen-
tially in time. To utilize this property of the electrodes we
first discuss the lifetime for occupation of the central site in
the absence of an environment.

In the absence of coupling to the environment the retarded
Green’s operator for the central site,Ĝc

R , reduces to the
c-number Green’s function, equaling the amplitudeGc

R for
the particle to remain at the central site. The Fourier trans-
formed amplitude satisfies the Dyson equation,

Gc
R~e!5gc

R~e!1gc
R~e!Sc

R~e!Gc
R~e!, ~22!

where the central site self-energy is given by

Sc
R~e!5(

ps
uVpsu2gps

R ~e!, ~23!

and describes the coupling of the central site to the reser-
voirs, as indicated by the appearance of the electrode propa-
gators. A lower capital is used to designate a subsystem
Green’s function, implying that the electron is not allowed to
propagate in or out of the electrodes, i.e., its dynamics is
determined by the Hamiltonian with all connecting elements,
Vp,s , set equal to zero.

In the absence of tunneling between the electrodes and the
central site we have for the isolated electrode Green’s func-
tions

gps
R ~e!5

1

e2ep,s1 i0
, ~24!

and for the central site Green’s function

gc
R~e!5

1

e2ec1 i0
. ~25!

In the presence of coupling between electrodes and the cen-
tral site the Dyson equation yields the central site Green’s
function in terms of the self-energy,

Gc
R~e!5

1

e2ec2Sc
R~e!

. ~26!

The escape rate from the central site is given by the imagi-
nary part of the self energy

G~e!52ImSc
R~e!5p(

ps
uVpsu2d~e2eps!. ~27!

If the hopping matrix elements vary slowly with energy in
the resonance region,e;ec , and the energy bands in the
reservoirs are wide so that also the electrode density of
states,Ns(e)5(pd(e2eps), has a weak energy depen-
dence, we can neglect the energy dependence of the escape
rate, and by analyticity we have

Sc
R~e!5E

2`

` de8

p

G~e8!

e2e81 i0
, ~28!

which implies that the real part of the self-energy vanishes in
the wide-band limit.

The wide-band approximation simplifies the problem con-
siderably as the time-dependent Green’s function becomes a
decaying exponential,
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Gc
R~ t,t8!52 iu~ t2t8!e2~ i /\!~ec2 iG!~ t2t8!, ~29!

and the Green’s function satisfies, for timest.t9.t8, the
relation

Gc
R~ t,t9!Gc

R~ t9,t8!5Gc
R~ t,t8!. ~30!

This group property leads to a tremendous simplification of
the interacting problem as the tunneling dynamics at the cen-
tral site and the environment dynamics decouple. If the
group property, Eq.~30!, is valid we have for the central site
amplitude correlations

^Ĝc
A~ t4 ,t3!Ĝc

R~ t2 ,t1!&5Gc
A~ t4 ,t3!Gc

R~ t2 ,t1!Z~ t4 ,t3 ,t2 ,t1!,
~31!

where we have introduced the influence function describing
the effect of the environment

Z~ t4 ,t3 ,t2 ,t1!5^~ T̃e~ i /\!*
t4

t3 dtX~ t !!~Te2~ i /\!*
t1

t2 dtX~ t !!&
~32!

with the environment variable in the interaction picture

X~ t !5e~ i /\!HbtXe2~ i /\!Hbt, ~33!

andT and T̃ denotes the time and antitime ordering opera-
tors, respectively. The decoupling of the particle and envi-
ronment degrees of freedom is visualized using Feynman
diagrams in Fig. 1.

Because of the group property, Eq.~30!, the central site
dynamics has a special behavior: the lifetime of the central
site state is independent of the coupling to the environment,
as the probabilityPc(t) for the particle to remain at the cen-
tral site after a time spant, if initially at the central site, is

Pc~ t !5^Ĝc
A~0,t !Ĝc

R~ t,0!&, ~34!

and noting thatTe2( i /\)*0
t d t̄X( t̄ ) is the interaction picture time

evolution operator for the bath, and consequently unitary, we
haveZ(0,t,t,0)51. Therefore by Eq.~31! we have for the
staying probability

Pc~ t !5^Gc
A~0,t !Gc

R~ t,0!&5e2~2G/\!t, ~35!

which is independent of the coupling to the environment.4

Before we go on to calculate the influence functionZ,
which contains all information about the influence of the
environment for various environmental states, we briefly dis-
cuss the transmission problem in the absence of coupling to
the environment. We shall explicitly assume the exponential
form Eq. ~29! for the decay amplitude.

If we for the moment neglect the coupling to the environ-
ment we have for the transition probability

Pp8,l→p,r~ t !5
1

\4uVp,r u2uVp8,l u
2E

0

t

dt1E
t1

t

dt2E
0

t

dt3E
0

t3
dt4

3e~ i /\!ep,r ~ t22t3!1~ i /\!ep,l ~ t42t1!

3e2~ i /\!~ec2 iG!~ t22t1!1~ i /\!~ec1 iG!~ t32t4!.

~36!

The integrations are readily done and we obtain for the tran-
sition probability per unit time

wp8,l→p,r5 lim
t→`

Pp8,l→p,r~ t !

t

5
2p

\

uVp,r u2uVp8,l u
2

~ep8,l2ec!
21G2 d~ep,r2ep8,l !, ~37!

or equivalently for the transmission coefficient

T~e,e8!5
4G lG r

~e82ec!
21G2 d~e2e8!

5
2G lG r

G
Ac~e8!d~e2e8!, ~38!

where we have introduced the central site spectral weight
function

Ac~e8!5 i „Gc
R~e8!2Gc

A~e8!…5
2G

~e82ec!
21G2 ~39!

and the left and right escape rates

Gs5p(
p

uVpsu2d~e2eps!. ~40!

We observe that the transmission coefficient has the expected
resonant character of the Breit-Wigner formula.7

In the absence of coupling to the environment we there-
fore have the contribution to the conductance at energye8,

G~e8!5
4e2

p\

G lG r

~e82ec!
21G2 . ~41!

Having discussed briefly the uncoupled case, we now turn
to calculate the influence functionZ for various environmen-
tal states. We shall invoke the assumption of a wide-band
width allowing for the decoupling expressed by Eq.~31!, and
obtain in this approximation the following expression for the
transmission coefficient:

T~e,e8!5 lim
t→`

1

t

2G lG r

p\3 E
0

t

dt1E
t1

t

dt2E
0

t

dt3E
0

t3
dt4

3Z~ t4 ,t3 ,t2 ,t1!e
~ i /\!e~ t22t3!1~ i /\!e8~ t42t1!

3e2~ i /\!~ec2 iG!~ t22t1!1~ i /\!~ec1 iG!~ t32t4!. ~42!

In the wide-band limit we notice the integral of the transmis-
sion coefficient is related to the staying probability at the
central site:

FIG. 1. The Feynman diagrammatic representation of the decou-
pling of particle and environment dynamics for the amplitude cor-
relator^Ĝc

A(t4 ,t3)Ĝc
R(t2 ,t1)& in the wide-band approximation. The

double lines denote the full central site Green’s functions while the
single lines denote the central site Green’s functions in the absence
of coupling to the environment. The curly lines denote the correla-
tor of the environment operator.
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E
2`

`

de8T~e8!5
8pG lG r

\ E
0

`

dt Pc~ t !, ~43!

and we can therefore conclude that the integral ofT(e8) is
unaffected by the coupling to the environment since the stay-
ing probabilityPc(t) is unaffected.

V. CLOSED TIME PATH FORMULATION
FOR THE INFLUENCE FUNCTION

In order to calculate the influence of the environment on
the otherwise coherent quantum process, the task is to calcu-
late the influence function given in Eq.~32!. The first step in
achieving such a goal is to transform the operator expression
into an analytical one. A general and convenient method for
performing this transformation has been devised by
Schwinger.8 The key point to note for employing this method
for the present purpose is to note that the influence function
Z quite generally can be expressed in terms of a closed time
path generating functional provided the ‘‘force’’ is chosen
properly as

Z~ t4 ,t3 ,t2 ,t1!5^TCe
2~ i /\!*c dt f ~t!X~t!&u f ~t!5 f0~t! , ~44!

where C is the closed time path extending from2` to
1` alongC1 and back again alongC2 , as illustrated in Fig.
2, andTC is the contour ordering symbol, ordering the envi-
ronment operatorsX(t) according to their contour label po-
sition on the contourC ~earliest to the right! and f 0(t) is the
function on the upper and lower branches of the contour
specified by

f 0~t!5H f 10~ t ! 5 u~ t22t !2u~ t12t !, t5tPC1

f 2
0~ t ! 5 u~ t32t !2u~ t42t !, t5tPC2 .

~45!

The closed time path generating functional

Z@ f #[^TCe
2~ i /\!*cdt f ~t!X~t!& ~46!

is therefore the quantity of interest.
The influence of the environment only appears through

the state of the environment in the generating functional, and
different environments can now be handled on an equal foot-
ing corresponding to just substituting the proper environmen-
tal state, i.e., the corresponding statistical operator.

In the present formulation we note that corresponding to
the influence of an environment on a given physical quantity
there corresponds a function, here denoted the proper
‘‘force,’’ which when inserted into the generating functional
completely specifies the influence of the environment.

In the following section we calculate the generating func-
tional and the influence function for various environmental
states.

VI. THE INFLUENCE FUNCTION FOR TYPICAL
ENVIRONMENTAL STATES

In the preceding section we showed that in the presented
model the influence functional refers explicitly only to the
environmental degrees of freedom and is characterized by a
single ‘‘force.’’ This simplifying feature will allow us to ob-
tain closed expressions for the influence function for typical
environmental states.

A. Thermal environment

We first discuss the quite common physical situation
where the environment is acting as a heat bath. This could,
for example, be the case in question where the Hamiltonian
is thought to represent a resonant tunneling structure, the
lattice degrees of freedom of the crystal acting as the heat
bath.

A heat bath is characterized by a single macroscopic pa-
rameter, its temperatureT, and the environmental state is in
this case described by the equilibrium statistical operator

rb5rT5
e2Hb /kBT

tre2Hb /kBT
. ~47!

The average of the generating functional is then Gaussian,
yielding the quadratic form

Z@ f #5expH 2
i

2\2E
c
dtE

c
dt8 f ~t!D~t,t8! f ~t8!J , ~48!

where

D~t,t8!52 i ^TC@X~t!X~t8!#& ~49!

is the contour ordered bath Green’s function.
It is convenient for the physical interpretation to split the

exponent appearing in the generating functional into real and
imaginary parts9

Z@ f #5expH 2
i

\2E
2`

`

dtE
2`

`

dt8@2 f2~ t !DR~ t,t8! f1~ t8!

1 f2~ t !DK~ t,t8! f2~ t8!#J , ~50!

where

f6~ t !5 1
2 @ f 1~ t !6 f 2~ t !# ~51!

and

DR~ t,t8!52 iu~ t2t8!^@X~ t !,X~ t8!#& ~52!

is the retarded bath propagator, and

DK~ t,t8!52 i ^$X~ t !,X~ t8!%& ~53!

is the correlation or Keldysh bath propagator.10

For the present thermal case we have for the retarded
Green’s function

FIG. 2. Closed time pathC extending from2` to 1` along
C1 and back again alongC2 .

10 046 53PING AO, STAFFAN GRUNDBERG, AND JO”RGEN RAMMER



DR~ t,t8!52
\2

2
u~ t2t8!E

0

`

dv J~v!sinv~ t2t8!,

~54!

where

J~v!5
4

\2 (
a

la
2d~v2va!52

4

p\2ImD
R~v! ~55!

is the spectral function completely characterizing the influ-
ence of the microscopic degrees of freedom of the bath. For
the correlation function we similarly have

DK~ t,t8!52 i
\2

2 E0
`

dv J~v!coth
\v

2kBT
cosv~ t2t8!. ~56!

The Fourier transforms of the retarded and the correlation
propagator is connected according to the fluctuation-
dissipation theorem

DK~v!52i ImDR~v!coth
\v

2kBT
. ~57!

The calculation of the influence of the thermal reservoir
on the transition probability has now been reduced to the
performance of simple integrals that are readily done and we
obtain for the influence function

Z~ t4 ,t3 ,t2 ,t1!5ZR~ t4 ,t3 ,t2 ,t1!Z
K~ t4 ,t3 ,t2 ,t1!, ~58!

where the contribution from the retarded bath propagator is
given by

ZR~ t4 ,t3 ,t2 ,t1!5e~ i /4!l~ t22t11t42t3!Z̃R~ t4 ,t3 ,t2 ,t1!,
~59!

with

Z̃R~ t4 ,t3 ,t2 ,t1!5expH i4E0`dv
J~v!

v2 Sv~ t4 ,t3 ,t2 ,t1!J ,
~60!

specified by the function

Sv~ t4 ,t3 ,t2 ,t1!52sinv~ t22t1!2sinv~ t32t2!

1sinv~ t42t2!1sinv~ t32t1!

2sinv~ t42t1!1sinv~ t32t4!, ~61!

and the effective coupling constant given by

l5E
0

`

dv
J~v!

v
. ~62!

The contribution from the correlation bath propagator is
similarly given by

ZK~ t4 ,t3 ,t2 ,t1!5expH 2
1

4E0
`

dv
J~v!

v2 coth
\v

2kBT
Cv~ t4 ,t3 ,t2 ,t1!J , ~63!

where

Cv~ t4 ,t3 ,t2 ,t1!522cosv~ t12t2!2cosv~ t22t3!

1cosv~ t12t3!1cosv~ t22t4!

2cosv~ t12t4!2cosv~ t42t3!. ~64!

The two real functionsCv andSv are the real and imaginary
parts of the complex function

f v~ t4 ,t3 ,t2 ,t1!522eiv~ t22t1!2eiv~ t32t2!1eiv~ t32t1!

1eiv~ t42t2!2eiv~ t42t1!2eiv~ t42t3!.

~65!

Since the environment is in thermal equilibrium the influ-
ence functionZ(t4 ,t3 ,t2 ,t1) in fact depends only on three
independent variables:

t5t22t1 ,

t85t32t4 , ~66!

t95t32t2 ,

the above choice being determined by the original time la-
beling of the Green’s functions.

In terms of the independent variables we then obtain for
the transition probability per unit time

wp8,l→p,r5 lim
t→`

P~ t !

t

5
uVp,r u2uVp8,l u

2

\4 E
2`

`

dt9E
0

`

dt8E
0

`

dt Z̃~t,t8,t9!

3expH 2
i

\
~ep,r2ep8,l !t92

i

\
~ep8,l2 ẽc2 iG!t8

1
i

\
~ep8,l2 ẽc1 iG!tJ , ~67!

where the influence function in terms of the three indepen-
dent variables again is split into the two distinct parts,

Z̃~t,t8,t9!5Z̃R~t,t8,t9!ZK~t,t8,t9!, ~68!

where

Z̃R~t,t8,t9!5expH i4E0`dv
J~v!

v2 Sv~t,t8,t9!J , ~69!

with
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Sv~t,t8,t9!52sinvt1sinvt82sinvt91sinv~t92t8!

1sinv~t91t!2sinv~t91t2t8!, ~70!

and the correlation part

ZK~t,t8,t9!5expH 2
1

4E0
`

dv
J~v!

v2 Cv~t,t8,t9!

3coth
\v

2kBT
J , ~71!

where

Cv~t,t8,t9!522cosvt2cosvt82cosvt9

1cosv~t92t8!1cosv~t1t9!

2cosv~t91t2t8!. ~72!

The central site energy is shifted downwards according to

ẽc5ec2
\l

4
, ~73!

similar to the negative polaronic energy shift.
For the transmission coefficient in the case of a thermal

environment we then get

T~e,e8!5
2

p\3G lG rE
2`

`

dt9E
0

`

dt8E
0

`

dt Z̃~t,t8,t9!

3expH 2
i

\
~e2e8!t92

i

\
~e82 ẽc2 iG!t8

1
i

\
~e82 ẽc1 iG!tJ . ~74!

This expression has been studied perturbatively in the case of
the Einstein model,4 and also in terms of elastic and inelastic
channels.3 In the following we investigate the total transmis-
sion coefficient in the thermal case and obtain explicit ex-
pressions for various limiting situations.

1. The total transmission coefficient

If we are not interested in the energetics of the arriving
particles in the right electrode, but only in the number of
arriving particles, only the total transmission coefficient is
relevant. Such a situation arises, for instance, in the case
where we can neglect any effect of the Pauli principle in the
right electrode, corresponding to the situation of a highly
biased left electrode in which case the left-going current is
zero. In this situation the current of arriving particles is

I5eE
0

`

de8T~e8! f L~e8!. ~75!

In such a case we only need the expression for the total
transmission coefficient, which, according to Eqs.~74! and
~21!, is given by

T~e8!5
4

\2G lG rE
0

`

dt8E
0

`

dt Z̃~t,t8!

3expH 2
i

\
~e82 ẽc2 iG!t81

i

\
~e82 ẽc1 iG!tJ ,

~76!

where

Z̃~t,t8!5Z̃R~t,t8!ZK~t,t8! ~77!

is specified by

Z̃R~t,t8!5Z̃R~t,t8,0!

5expH 2
i

4E0
`

dv
J~v!

v2 sinv~t2t8!J , ~78!

and the correlation part

ZK~t,t8!5ZK~t,t8,0!

5expH 2
1

4E0
`

dv
J~v!

v2 coth
\v

2kBT

3@12cosv~t2t8!#J . ~79!

Since the environment is in the thermal equilibrium state, the
influence function for the total transmission coefficient only
depends on one time variable, and the expression for the total
transmission coefficient can be reduced to a single integral
by introducing the mean and relative time variables:

tm5
t1t8

2
,

t5t2t8. ~80!

For the integration region we observe

E
0

`

dtE
0

`

dt85E
2`

`

dtE
utu/2

`

dtm , ~81!

and performing the integration over the mean time we finally
obtain

T~e8!5
2

\

G lG r

G E
0

`

dt e2~Gt/\!ZK~ t !

3F Z̃R~ t !expH i

\
~e82 ẽc!tJ 1c.c.G , ~82!

where

Z̃R~ t !5expH 2
i

4E0
`

dv
J~v!

v2 sinvtJ , ~83!

and

ZK~ t !5expH 2
1

4E0
`

dv
J~v!

v2 coth
\v

2kBT
~12cosvt !J .

~84!
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In the case where the oscillators all have the same fre-
quency, the Einstein model, the spectral function takes the
form

J~v!5
4l0

2

\2 d~v2v0!, ~85!

relevant, e.g., to optical phonons. In this case, we deduce
from Eqs.~82!–~84! the total transmission coefficient

T~e8!5
2G lG r

\G E
0

`

dt expH 2S l0

\v0
D 2@112n~v0!#J

3FexpH S l0

\v0
D 2@11n~v0!#e

2 iv0tJ
3expH S l0

\v0
D 2n~v0!e

iv0tJ
3expH 2

1

\
~G2 i @e82 ẽc!#tJ 1c.c.G , ~86!

wheren(v) is the Bose function

n~v!5
1

e\v/kBT21
. ~87!

Expanding the exponential functions containingeiv0t and
e2 iv0t, and performing the integration overt, we obtain

T~e8!54G lG r (
n52`

`
Pn~T!

~e82 ẽc2n\v0!
21G2 , ~88!

where the temperature dependence is specified by

Pn~T!5expH 2S l0

\v0
D 2@112n~v0!#J (

n1 ,n250

`

8
1

n1!n2!

3F S l0

\v0
D 2@11n~v0!#Gn1F S l0

\v0
D 2n~v0!Gn2,

~89!

the prime restricting the summation to the terms for which
n12n25n. Transmission can take place with absorption or
emission of oscillator quanta giving rise to additional reso-
nance peaks, the functionPn(T) determining the relative
weight of the peaks. The energy dependence of the transmis-
sion coefficient is illustrated in Fig. 3. In particular, in the
low-temperature limit,kBT,\v0 , where the Bose function
vanishes,n(v)→0, we can ignore all terms containing pow-
ers ofn(v) in Eq. ~89!, and obtain at zero temperature

Pn~0!5H expH 2S l0

\v0
D 2J 1n! S l0

\v0
D 2n, n>0

0, n,0,

~90!

reflecting the possibility of an electron off resonance to tun-
nel from the left to the right reservoir via the central site by
spontaneously emitting a phonon, and the impossibility of
gaining energy from a zero-temperature environment. We
note thatPn(0) is a Poisson distribution characterized by its
mean value

^n&5 (
n50

`

nPn~0!5S l0

\v0
D 2. ~91!

2. Approximations conserving the integrated
transmission probability

To illustrate the general features of the systematic and
fluctuation influences of the environment we choose the
spectral function in the further calculations to have the form

J~v!5hvS v

vc
D s21

expS 2
v

vc
D . ~92!

We note thath is a dimensionless constant describing the
coupling strength between the central level and the environ-
ment, andvc is the cutoff frequency for the oscillators.

There are several limits in which simple expressions
for the transmission coefficient may be worked out. These
limits are the broad resonance limit,G.\vc , the strong-
coupling limit, h.1, the high-temperature limit,
kBT.(111/h)\vc , and the weak-coupling and low-
temperature limit,h,1, kBT,\vc /h.

a. Broad resonance limit.In the broad resonance limit,
G.\vc , a short time expansion of the influence function is
sufficient. The correlation part of the influence function is
therefore given by

ZK~ t !5expH 2
k~T!

8
t2J , ~93!

which controls the other part to become

Z̃R~ t !5expH 2 i
l

4
tJ . ~94!

Herek is defined as

k~T!5E
0

`

dv J~v!coth
\v

2kBT
. ~95!

The total transmission coefficient, Eq.~82!, is therefore in
the broad resonance limit given by

T~e8!5
2G lG r

\G E
0

`

dt@e2@k~T!/8#t22~1/\!@G2 i ~e82ec!#t1c.c.#.

~96!

FIG. 3. The total transmission coefficient~in units of
4G lG r /G

2) for the Einstein environment case. The parameters are
G50.2\v0 , l05\v0 , andkBT5\v0 .
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We note that the polaron shift has canceled out, reflecting
that the escape rate out of the central site is so fast that any
real part environmental self-energy dressing effect is absent.

The integral in Eq.~96! can now be performed and we
obtain

T~e8!5A 2p

k~T!

2G lG r

G\ H e@2/~k~T!\2!#@G2 i ~e82ec!#2

3F12FSA 2

k~T!\2@G2 i ~e82ec!# D G1c.c.J ,
~97!

whereF(z) is the probability integral, the error function. We
note that in the above case the resonant line shape is no
longer of the Lorentz type. The energy dependence in the
broad resonance limit of the transmission coefficient in the
Ohmic case,s51, is illustrated in Fig. 4.

b. Strong-coupling limit.In the strong-coupling limit,
h.1, we only need to consider the short-time limit,
vct,1, because at larger times the influence function is ex-
ponentially small due to the short range of the correlation
part, ZK(t). Therefore, the correlation part of the influence
function is for the present case the same as in Eq.~93!, and
similarly the retarded part of the influence function is speci-
fied by Eq. ~94!. The expression for the total transmission
coefficient is therefore the same as the one given in Eq.~97!.
However, the validity condition here is the strong-coupling
criteria,h.1, and there is no requirement on the escape rate
G. We note again that in the short-time-limit approximation
the retarded part of the influence function has no effect, and
the correlation part of the influence function is for the
present case the relevant one. In Fig. 5 the strong-coupling
approximation for the transmission coefficient is plotted ver-
sus energy for the case of an Ohmic bath. We get in the
strong-coupling approximation for typical parameter values,
h510, \vc5G, and 2kBT5G, a 5% too low transmission
maximum that is displaced to a slightly higher energy as
compared to the exact result.

c. High-temperature limit.When the temperature is high
enough,kBT.(111/h)\vc , we can again use a short-time
approximation

ZK~ t !5expH 2
k8~T!

8
t2J , ~98!

where now

k8~T!5
2kBT

\ E
0

`

dv
J~v!

v
, ~99!

which again controls the retarded part of the influence func-
tion to be

Z̃R~ t !5expH 2 i
l

4
tJ . ~100!

Similar to the two previous cases, the expression for the total
transmission coefficient is

T~e8!5A 2p

k8~T!

2G lG r

G\ H e@2/~k8~T!\2!#@G2 i ~e82ec!#2

3F12FSA 2

k8~T!\2@G2 i ~e82ec!# D G1c.c.J ,
~101!

which has the same form as Eq.~97!, except thatk is re-
placed byk8. The high-temperature approximation is com-
pared to the exact result in Fig. 6 for the parameter values
h51, \vc5G, and 2kBT510G. We note that the high-
temperature approximation gives a slightly lower transmis-
sion maximum than the exact calculation yields.

d. Weak-coupling and low-temperature limit.When the
coupling is weak, h,1, and the temperature is low,
kBT,\vc /h, the situation is different from the previous
cases. The weak-coupling condition,h,1, forces the part of
the influence function,Z̃R, to equal unity at all times,
Z̃R(t);1. We also note that there is no contribution from the
correlation part in the short-time limit due to the weak-
coupling condition. We need therefore to consider the long-
time behavior of the correlation part. The reason for the con-
dition kBT,\vc /h is to avoid the high-temperature regime
where only short times give a contribution.

The argument of the exponential in the expression for the
correlation part of the influence function

FIG. 4. Transmission coefficient~in units of 4G lG r /G
2) for the

Ohmic environment case in the broad resonance limit,G.\vc .
The broad resonance approximation~solid curve! is compared to
the exact result~dots!. The parameter choice ish51, 2kBT5G,
and\vc50.1G, which yields\2k(T)50.101G2.

FIG. 5. Transmission coefficient~in units of 4G lG r /G
2) for the

Ohmic environment case in the strong-coupling limit,h.1. The
strong-coupling approximation~solid curve! is compared to the ex-
act result ~dots!. The parameter choice ish510, \vc5G,
2kBT5G, and\2k(T)'14.27G2.
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I s~ t ![E
0

`

dv
J~v!

v2 coth
\v

2kBT
~12cosvt ! ~102!

approaches in the long-time limit,t.max(1/vc ,\/2kBT),
the expression

I s~ t !5h
2kBT

\
t~vct !

12sE
0

`

dx xs23~12cosx!,

~103!

for the exponent region 0,s,2. If s.2, then I s(t) ap-
proaches a constant in the long-time limit, and there is there-
fore no contribution from the correlation part in this case. To
be more specific, we perform the integration for the Ohmic
case,s51. In the long-time limit,I 1(t)5h(pkBT/\)t, and
the Ohmic correlation part becomes

ZK~ t !5expH 2
phkBT

4\
tJ . ~104!

Therefore, the total transmission coefficient is

T~e8!5
2G lG r

\G E
0

`

dtFexpH 2
1

4
h

pkBT

\
t

2
1

\
@G2 i ~e82 ẽc!#tJ 1c.c.G . ~105!

The polaronic shift is no longer canceled asZ̃R;1. Perform-
ing the integration we find for the total transmission coeffi-
cient

T~e8!5
Geff

G

4G lG r

~e82 ẽc!
21Geff

2
, ~106!

where

Geff5G1
phkBT

4
. ~107!

We note that the Lorentzian character of the resonant trans-
mission coefficient is preserved in this limit, but the width
and the height of the resonance peak are different compared
to the case where the bath is absent. Clearly, at high enough

temperatures,T.4G/phkB , the resonance peak will be
strongly reduced. Therefore, although the coupling is weak,
the result is highly nonperturbative. The weak-coupling ap-
proximation in the temperature range 4G/ph,kBT
,\vc /h is compared to the exact result in Fig. 7, for pa-
rameter valuesh50.1, \vc5100G, and 2kBT5100G. For
this parameter choice the resonance peak is broadened ap-
proximatively five times compared to the case where the en-
vironment is absent. Even though in the case considered the
coupling constant is not that small and the temperature is not
excessively low, the deviation of the approximately calcu-
lated transmission maximum compared to the exact value is
no more than 10%.

We notice that the zeroth moment of the transmission co-
efficient,

E
2`

`

de8T~e8!5
4pG lG r

G
, ~108!

is preserved exactly in all the approximations considered
above. We also notice that the first moment of the transmis-
sion coefficient,

G

4pG lG r
E

2`

`

de8e8 T~e8!5ec ~109!

is preserved exactly by all the approximations except for the
weak-coupling and low-temperature approximation where
the transmission coefficient is symmetric aroundẽc , which
is anyhow close toec because the coupling is weak.

B. The fluctuating level model

When discussing specific properties of a physical system,
it is often possible to neglect the quantum nature of the en-
vironment and represent the effect of the environment by a
collective classical variable, which is appropriate when quan-
tum fluctuations can be neglected. A well-known example is
the excellent account of the atomic spectra obtained by dis-
regarding the quantum fluctuations of the electromagnetic
environment, except for cases where degeneracies are only
lifted by radiative corrections. A counterexample where the

FIG. 6. Transmission coefficient~in units of 4G lG r /G
2) for the

Ohmic environment case in the high-temperature limit,
kBT.(111/h)\vc . In the figure the high-temperature approxima-
tion ~solid curve! is compared to the exact result~dots!. The param-
eter choice ish51, \vc5G, 2kBT510G, and\2k8(T)510G2.

FIG. 7. Transmission coefficient~in units of 4G lG r /G
2) for the

Ohmic environment case in the weak-coupling and low-temperature
limit, h,1 and kBT,\vc /h. The weak-coupling and low-
temperature approximation~solid curve! is compared to the exact
result ~dots!. The parameter choice ish50.1, \vc5100G, and
2kBT5100G.
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effect of the environment is of pure quantum nature is of
course as easily recalled, that of stimulated emission.

In the case where the degree of freedomX represents
environmental degrees of freedom collectively in the form of
an external classical potential, we can still use the presented
method for calculating the influence. In this case the quantity
X just corresponds to a classical potential, and is not an
operator but just ac number. We shall in this section discuss
the case where the potentialX is a fluctuating quantity, the
fluctuating level model.

We assume further that the fluctuations are Gaussian, and
therefore characterized by the lowest-order correlations

^X~ t !&5c,

Š@X~ t !2^X~ t !&#@X~ t8!2^X~ t8!&#‹5K~ t2t8!. ~110!

The influence of the now classical environmental degree of
freedomX is given by the generating functional expression,
Eq. ~44!, however, now the brackets simply denote the
Gaussian average with respect to the fluctuating quantity
X. We therefore have for the generating functional, which in
this case is just the probability theory contour characteristic
functional,

Z@ f #5expH 2
i

\Ecdt f ~t!^X~t!&

2
1

2\2E
c
dtE

c
dt8 f ~t!K~t2t8! f ~t8!J . ~111!

The reason we made the distinction in the previous section in
the effects of the environment as expressed in the split

Z5ZRZK, ~112!

where we distinguish between the retarded and correlation
contributions, is that they represent two distinct influences of
the environment. The termZR represents the systematic fric-
tion type and energy renormalization influence andZK the
fluctuating part, including thermal as well as quantum fluc-
tuations. For the thermal environment discussed in the pre-
vious subsection, the two types of influence were not inde-
pendent, but related through the fluctuation-dissipation
theorem.

We now compare the thermal quantum environment with
the classical stochastic environment introduced above. It fol-
lows directly in the presented real-time approach that the
fluctuating level model is in one-to-one correspondence with
the fluctuational aspect of the thermal case with the prescrip-
tion for the correlation part

DK~ t,t8!°22iK ~ t2t8!, ~113!

and substitution of one forZ̃R, Z̃R°1. In addition, we see
that the polaronic shift corresponds to the average displace-
ment of the environment

\l

4
°2c, ~114!

obtained from Eq.~76!.

The transmission coefficient for the stochastic environ-
ment is obtained from

T~e8!5
4G rG l

\2 E
0

`

dt8E
0

`

dt ZK~t,t8!

3expH i

\
~e82 ẽc1 iG!t2

i

\
~e82 ẽc2 iG!t8J ,

~115!

where

ZK~t,t8!5expH 2
2

\2E
2`

`

dtE
2`

`

dt8 f2
0 ~ t !K~ t2t8! f2

0 ~ t8!J ,
~116!

and

f2
0 ~ t !5 1

2 $@u~t2t !2u~2t !#2@u~t2t !2u~2t81t2t !#%
~117!

and the correlation partZK now depends on the explicit form
of the correlatorK. For example, the high-temperature form
of the correlation functionDK for a thermal Ohmic environ-
ment,J(v)5hv, corresponds to ad-correlator

K~ t2t8!5
p\hkBT

2
d~ t2t8!, ~118!

the white noise case. The fluctuating level model thus only
captures the correlation partZK of the thermal environment
and neglects the systematic retarded part, except for its av-
erage influence.

For the fluctuating level model we therefore get for the
influence function in the Ohmic case,

ZK~t,t8!5expH 2
1

4\
phkBTut2t8uJ , ~119!

and for the transmission coefficient

T~e8!5
Geff

G

4G lG r

~e82 ẽc!
21Geff

2
. ~120!

Comparing the result to the uncoupled case, we notice, be-
sides the average energy shift and a reduction of the peak,12

that the resonance widthG of Eq. ~41! is broadened accord-
ing to

G→Geff5G1
p

4
hkBT. ~121!

We note that the transmission coefficient in this case is the
same as the one obtained for the thermal case in the weak-
coupling and low-temperature limit.

C. The external field case

Just as in the previous section we shall here consider the
case where the environment can be described classically. In
addition we shall assume that in contrast to the previous
section we know not only the probability distribution of the
potential, but in fact the actual potential. In the following we
shall therefore investigate the situation where we are able to
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couple the electron to an external field at the central site. In
the present case of linear coupling it is sufficient to consider
the case where the central site energy level changes harmoni-
cally in time. The external potential is therefore given by

X~ t !5X0cosv0t. ~122!

Such a situation could, for instance, be realized in the case
where the Hamiltonian represents a small metallic grain with
a single active level whose energy can be changed by an
external electric potential, and the grain being coupled to
large metallic electrodes.

In the case where the influence of the environment is rep-
resented by the external potential given by Eq.~122! we
obtain for the influence function

Z~ t4 ,t3 ,t2 ,t1!5^TCe
2~ i /\!*cdt f ~t!X~t!&u f5 f0

5e2~ i /\!X0*2`
` dt@ f1~ t !2 f2~ t !#cosv0t

5expH iX0

\v0
~sinv0t12sinv0t2

1sinv0t32sinv0t4!J . ~123!

This corresponds to the fluctuating level model for the case
where the potentialX(t) is known with certainty to be given
by the expression in Eq.~122!.

For the transition probability per unit time we then obtain
the expression

wp8,l→p,r5
uVp,r u2uVp8,l u

2

\4 E
2`

`

dt9E
0

`

dt8E
0

`

dt

3expH 2
i

\
~ep,r2ep8,l !t9

2
i

\
~ep8,l2ec2 iG!t81

i

\
~ep8,l2ec1 iG!tJ

3 lim
t→`

1

t E0
t

dt1expH i

\

X0

v0
~Ref

t,t8,t9

v0 sinv0t1

1Imf
t,t8,t9

v0 cosv0t1!J , ~124!

where we have introduced the function

f
t,t8,t9

v0 512eiv0t1eiv0~t1t9!2eiv0~t1t92t8!. ~125!

We now calculate the integral overt1 in Eq. ~124! by
expanding the exponential before performing the integration,
and therefore assume thatv0 is nonzero. The case of zero
v0 corresponds to a constant external potential,X(t)5X0 ,
which only yields a trivial shift of the resonant energy. The
transition probability per unit time can now be expressed as
an integral involving the zeroth-order Bessel function,J0 .

11

T~e,e8!5
2G lG r

p\3 E
2`

`

dt9E
0

`

dt8E
0

`

dt J0S X0

\v0
u f

t,t8,t9

v0 u D
3expH 2

i

\
~e2e8!t92

i

\
~e82ec2 iG!t8

1
i

\
~e82ec1 iG!tJ . ~126!

If we had assumed that the external potential was a sine
function,X(t)5X0sinv0t, we would have obtained the same
transmission coefficient for nonzerov0 , but we would of
course not have obtained a shift of the resonant energy in the
case ofv050. The total transmission coefficient is

T~e8!5
4G lG r

\2 E
0

`

dtE
0

`

dt8J0S X0

\v0
u f t,t8,t950
0 u D

3expH 2
i

\
~e82ec2 iG!t81

i

\
~e82ec1 iG!tJ .

~127!

Noting that u f
t,t8,t950

v0 u254sin2(v0(t2t8)/2), and using the
summation formula for the Bessel functionJ0 ~Ref. 12! we
obtain the total transmission coefficient13

T~e8!54G lG r (
n52`

` Jn
2~X0 /\v0!

~e82ec2n\v0!
21G2 . ~128!

The total transmission coefficient has Lorentzian side bands
at all harmonics of\v0 with a relative weight determined by
the Bessel functions, and maximal peaks in the spectrum at
n;6X0 /\v0 . The transmission coefficient is plotted for
the parametersG50.2\v0 andX054\v0 in Fig. 8. For this
parameter choice the first sideband is almost missing because
X0 /\v0 is close to the first zero of the first-order Bessel
function.

D. Coherent state environment

In the following we shall investigate the model for the
environment in the coherent state. Such a model may de-
scribe transport through a quantum dot coupled to an envi-
ronment of coherent phonons.15

FIG. 8. Transmission coefficient~in units of 4G lG r /G
2) for the

external field case,X(t)5X0cosv0t. The parameter choice is
G50.2\v0 andX054\v0 .
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The coherent state has the following representation in
terms of the vacuum stateu0& of the environment:

uf&5Nf
21/2exp$fb0

†%u0&, ~129!

where

Nf5exp$ufu2% ~130!

is the normalization factor.
The state of the environment is then a pure state and the

statistical operator for the environment reduces to the projec-
tion operator

rb5Pf5uf&^fu. ~131!

To calculate the influence of the environment in the case
of a coherent state we therefore need to evaluate the follow-
ing expression for the influence function:

Z~ t4 ,t3 ,t2 ,t1!5Z@ f 0#

5Nf
21^0uexp$f* b0%

3~TCe
2~ i /\!*cdt f0~t!X~t!!exp$fb0

†%u0&.

~132!

The bracket in the definition of the generating functional
corresponds therefore in this case to taking the expectation
value with respect to the coherent state:

Z@ f #5^TCe
2~ i /\!*cdt f ~t!X~t!&5^fuTCe2~ i /\!*cdt f ~t!X~t!uf&

5Nf
21^0uef* b0TCe

2~ i /\!*cdt f ~t!X~t!efb0
†
u0&. ~133!

The matrix element appearing in Eq.~133! is most easily
calculated by introducing the single mode generating func-
tional

Z@ f , f * #5^TCe
2~ i /\!*cdtl0~ f* ~t!b0~t!1 f ~t!b0

†
~t!!&. ~134!

We then notice that we can rewrite the generating functional
of interest as

Z@ f #5^fuTCe2~ i /\!*cdt f ~t!X~t!uf&5Z@ f̃ , f̃ * # ~135!

provided we substitute into Eq.~134!

f̃ ~t!5 f ~t!1 i\
f

l0
du~t! ~136!

and

f̃ * ~t!5 f ~t!2 i\
f*

l0
d l~t!, ~137!

wheredu( l )(t) is a d function on the upper~lower! part of
the contour, and vanishes on the lower~upper! part.

The single-mode generating functional involves a Gauss-
ian average and is given by the quadratic form

Z@ f , f * #5e2~ i /\2!*Cdt*Cdt8l0
2f* ~t!B~t,t8! f ~t8!, ~138!

whereB is the single-mode Green’s function

B~t,t8!52 i ^0uTC~b0~t!b0
†~t8!!u0&, ~139!

the zero-temperature limit of the previously introduced bath
propagatorD(t,t8) for the considered mode. If we therefore
insert the proper ‘‘force’’f 0 according to the prescription
Eqs.~136! and~137! we obtain the influence function for an
environment in a coherent state

Z~ t4 ,t3 ,t2 ,t1!5Z@ f 0#

5ZT50~ t4 ,t3 ,t2 ,t1!

3expF2i l0

\v0
Im$f~e2 iv0t22e2 iv0t1

1e2 iv0t42e2 iv0t3!%G . ~140!

Here ZT50 denotes the influence function for the thermal
case with the temperature set equal to zero, that is, the
ground-state case.

Exploiting the observations already made for the external
field case we obtain the following expression for the trans-
mission coefficient:

T~e,e8!5
2G lG r

p\3 E
2`

`

dt9E
0

`

dt8E
0

`

dt Z̃T50~t,t8,t9!

3J0S 2l0ufu
\v0

u f
t,t8,t9

v0 u DexpH 2
i

\
~e2e8!t9

2
i

\
~e82 ẽc2 iG!t81

i

\
~e82 ẽc1 iG!tJ ,

~141!

where the functionf
t,t8,t9

v0 is the same as the function intro-
duced in Eq.~125!.

The coherent state case shares features with both the ther-
mal and the external field cases. The coherent state influence
function consists of a factor equal to the zero-temperature
Einstein model influence function, which describes the sys-
tematic influence and quantum zero-point fluctuations, and in
addition a factor identical to the external field influence func-
tion.

For the total transmission coefficient we get

T~e8!5
4G lG r

\2 E
0

`

dtE
0

`

dt8J0S 2l0ufu
\v0

u f
t,t8,t950

v0 u D
3expH 2S l0

\v0
D 2~12e2 iv0~t2t8!!J

3expH 2
i

\
~e82 ẽc2 iG!t81

i

\
~e82 ẽc1 iG!tJ .

~142!

Performing a calculation similar to the one for the oscillatory
level model we get a simple formula for the total transmis-
sion coefficient

T~e8!54G lG r (
n52`

`
Qn

~e82 ẽc2n\v0!
21G2

, ~143!

where
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Qn5e2~l0 /\v0!2(
k50

`
1

k! S l0

\v0
D 2kJn2k

2 S 2l0ufu
\v0

D . ~144!

In the limit f50, we, of course, recover the zero-
temperature Einstein model result, Eq.~90!. In the limit of
l0→0, f→`, andl0ufu5const, we recover the classical
oscillatory level model result, Eq.~128!. This crossover be-
havior is illustrated in Fig. 9.

VII. SUPPRESSION OF QUANTUM INTERFERENCE

In the following section we investigate how the different
environments influence the phase coherence in a quantum
interference setup. We envisage the situation where two reso-
nant levels coupled to environments are placed in parallel
and transport can take place through either.14 A physical re-
alization could be double-barrier structures situated on the
two arms of a ring coupled to two reservoirs. The Hamil-
tonian still has the form

H5He1Hb1Hi , ~145!

but now the sample Hamiltonian corresponds to two levels:

Hs5 (
c51,2

ecac
†ac . ~146!

The tunneling can take place through either level with differ-
ent couplings

Ht5 (
p,s,c

$Vp,s,cac
†ap,s1H.c.%. ~147!

The interaction takes the form

Hi5 (
c51,2

ac
†acXc , ~148!

where the environment operator depends on the level
through the coupling constant

Xc5(
a

la,c$ba,c
† 1ba,c%, ~149!

and we assume a situation where the double-barrier struc-
tures are coupled to separate environments,

Hb5 (
c51,2;a

\va$ba,c
† ba,c1

1
2 %. ~150!

In order to have an external parameter to vary we envis-
age an Aharonov-Bohm type situation by piercing the ring
with a magnetic fluxF so that the propagators change ac-
cording to propagation around the different arms of the ring
according to

G1
R°e~ i /2!F/F0G1

R, G2
R°e2~ i /2!F/F0G2

R. ~151!

The transmission probability given by Eq.~11! now consists
of transmission through either arm and to accommodate this
two-level situation Eq.~14! is changed into

Pp8,l→pr~ t !5
1

\4 (
c1 ,c2 ,c3 ,c4

Vp8,l ,c1 ,Vp,r ,c2
* Vp,r ,c3

Vp8,l ,c4
*

3E
0

t

dt1E
0

t

dt2E
0

t

dt3E
0

t

dt4

3expH i

\
ep,r~ t22t3!1

i

\
ep8,l~ t42t1!J

3^Ĝc4 ,c3
A ~ t4 ,t3!Ĝc2 ,c1

R ~ t2 ,t1!&, ~152!

where

Ĝc2 ,c1
R ~ t2 ,t1!52 iu~ t22t1!^0u@ âc2~ t2!,âc1

† ~ t1!#u0& ~153!

and

Ĝc4 ,c3
A ~ t4 ,t3!5@Ĝc3 ,c4

R ~ t3 ,t4!#*

5 iu~ t32t4!^0u@ âc4~ t4!,âc3
† ~ t3!#u0&.

~154!

FIG. 9. Transmission coefficient~in units of 4G lG r /G
2) for the

coherent state environment. In diagram~a! we have chosen
G50.2\v0 , l05\v0 , and ufu51. In this case the transmission
curve resembles the one obtained for the Einstein model; see Fig. 3.
In ~b! G50.2\v0 , l05\v0 , and ufu52. In ~c! G50.2\v0 ,
l050.2\v0 , and ufu510. The shape of the curve in diagram~c!
resembles the one obtained in the external field case; see Fig. 8.
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In the following we shall neglect all terms except those for
which c45c3 andc25c1 . This is justified if the two reso-
nant levels have an energy difference larger than the width of
the levels. Here we simply implement it corresponding to
propagation taking place through either arm.

The transmission probability given by Eq.~11! then con-
sists of the transmission probabilities for transmission
through either arm and an interference contribution:

Pp8,l→p,r~ t !5 (
c51,2

Pc~p,p8,t !1Pint~p,p8,t !, ~155!

where

Pc~p,p8,t !5
uVp8,l ,cu

2uVp,r ,cu2

\4 E
0

t

dt1E
0

t

dt2E
0

t

dt3E
0

t

dt4expH i

\
ep,r~ t22t3!1

i

\
ep8,l~ t42t1!J

3Gc
A~ t4 ,t3!Gc

R~ t2 ,t1!Zc~ t4 ,t3 ,t2 ,t1! ~156!

and the interference term is given by

Pint~p,p8,t !5
1

\4Vp8,l ,1Vp,r ,1* Vp,r ,2Vp8,l ,2
* E

0

t

dt1E
0

t

dt2E
0

t

dt3E
0

t

dt4expH i

\
ep,r~ t22t3!1

i

\
ep8,l~ t42t1!J

3G2
A~ t4 ,t3!G1

R~ t2 ,t1!Z1~0,0,t2 ,t1!Z2~ t4 ,t3,0,0!1c.c. ~157!

We now have an influence function for each of the two dif-
ferent environments,Z1 and Z2 , corresponding to the two
different arms of the interferometer. For the transmission co-
efficient we now have according to Eqs.~18! and ~19!

T~e,e8!5 lim
t→`

h

t (
p,p8

Pp8,l→p,r~ t !d~e82ep8,l !d~e2ep,r !

5 (
c51,2

TC~e,e8!1Tint~e,e8!. ~158!

The calculation of the total transmission coefficient, speci-
fied in Eq.~21!, in various limits is similar to what has been
calculated in Sec. VI. For example, in the absence of an
environment we get for the total transmission coefficient

T~e8!5T1~e8!1T2~e8!12AT1~e8!T2~e8!
uG12r uuG21l u

AG1lG1rG2lG2r

3cosS f2arctan
G1

e82e1
1arctan

G2

e82e2

1argG12rG21l* D , ~159!

wheref52pF/F0 is the relative phase difference due to
the external flux, andT1 and T2 are the total transmission
coefficients for the individual arms, and specified in the pre-
vious sections. The decay rates, whose energy dependence
can be neglected in the wide-band limit, are defined as

Gc5Gcr1Gcl ~160!

and

Gc1c2s~e!5p(
p
Vpsc1
* Vpsc2

d~e2eps!. ~161!

To illustrate the special features of the suppression of phase
coherence in the present model, we discuss the cases of ther-
mal bath, fluctuating level, classical field, and coherent state
environment below.

A. Thermal bath and fluctuating level cases

The transmission coefficient through either arm we ob-
tained previously. For the interference term, we have the ex-
pression

Tint~e,e8!5
2

p\3e
ifG12rG21lE

2`

`

dt9E
0

`

dt8E
0

`

dt Z̃1~t,0,0!Z̃2~0,t8,0!

3expH 2
i

\
~e2e8!t9J expH 2

i

\
~e82 ẽ22 iG2!t8J expH 1

i

\
~e82 ẽ11 iG1!tJ 1c.c., ~162!

where the influence function corresponding to sitec enters as
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Z̃c~t,0,0!5expH 2
i

4E0
`

dv
Jc~v!

v2 sinvtJ expH 2
1

4E0
`

dv
Jc~v!

v2 coth
\v

2kBT
~12cosvt!J , ~163!

and the central site energies for each arm are shifted down-
wards according to

ẽc5ec2
lc

4
, ~164!

with the negative polaronic energy shift

lc5E
0

`

dv
Jc~v!

v
, ~165!

being site-dependent through the spectral function

Jc~v!5
4

\2(
a

la,c
2 d~v2va!. ~166!

In the course of the derivation we have noted that

Z̃c~t,0,0!5Z̃c* ~0,t,0!, ~167!

which follows from Eq.~17!. The interference contribution
to the transmission coefficient is seen to have the form

Tint~e,e8!5
4

\2e
ifG12rG21ld~e2e8!E

0

`

dt8Z̃2~0,t8,0!

3expH 2
i

\
~e82 ẽ22 iG2!t8J E

0

`

dt Z̃1* ~0,t,0!

3expH i

\
~e82 ẽ11 iG1!tJ 1c.c. ~168!

We notice that the interference term vanishes unless the en-
ergy of the particle is conserved. Any energy exchange with
the thermal environment thus destroys the interference. In

the present model interference is thus hypersensitive to the
presence of the thermal environment, and in a dramatic fash-
ion displays the equivalence of dissipation and loss of phase
coherence.

We can also calculate the transmission coefficient for the
case of fluctuating levels. We assume that each site,c51 and
c52, is coupled to separate classical fluctuating environ-
ments, represented by the variablesXc(t), c51,2, respec-
tively. Analogously to the previous thermal bath case there
are contributions to the transmission coefficient from trans-
mission through either arm, and there is an interference con-
tribution specified by Eq.~168!, except for the thermal influ-
ence function being replaced by

Z̃c~t,0,0!5Z̃c~0,t,0!5expH 2
1

4\2E
0

t

dtE
0

t

dt8Kc~ t2t8!J ,
~169!

where

Kc~ t,t8!5Š@Xc~ t !2^Xc~ t !&#@Xc~ t8!2^Xc~ t8!&#‹.
~170!

As in the thermal case, the interference contribution to the
transmission coefficient is completely suppressed by dissipa-
tion.

B. External field and coherent state cases

In the case where the energy levels change harmonically
in time with the same frequency

Xc~ t !5Xccosv0t, ~171!

but with different coupling strength, we obtain for the inter-
ference term

Tint~e2e8!5
2eif

p\3 G12rG21lE
2`

`

dt9E
0

`

dt8E
0

`

dt expH 2
i

\
~e2e8!t9J expH 2

i

\
~e82e22 iG2!t8J

3expH i

\
~e82e11 iG1!tJ lim

t→`

1

t E0
t

dt1expH i

\
~Reg

t,t8,t9

v0 sinv0t11Img
t,t8,t9

v0 cosv0t1!J 1c.c., ~172!

where we have introduced the function

g
t,t8,t9

v0 5
X1

\v0
~12eiv0t!1

X2

\v0
~eiv0~t1t9!2eiv0~t1t92t8!!.

~173!

Upon performing the integral overt1 we obtain

Tint~e,e8!5
2eif

p\3 G l2rG21lE
2`

`

dt9E
0

`

dt8E
0

`

dt J0~ ug
t,t8,t9

v0 u!

3expH 2
i

\
~e2e8!t92

i

\
~e82e22 iG2!t8J

3expH i

\
~e82e11 iG1!tJ 1c.c. ~174!
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Change in energy of the particle due to interaction with the
external field does not destroy the interference in accordance
with the notion that such a nondissipative process does not
lead to suppression of phase coherence when time reversal
symmetry is unbroken.

Carrying out a similar calculation for the coherent
state case, we find a similar qualitative behavior for
the interference term. Exchange of one quantum does
not change the coherent state and interference is not
destroyed.

VIII. SUMMARY AND CONCLUSION

We have developed a functional method to study the in-
fluence of various environments on quantum tunneling, and
shown that the effect of the environment on the transmission
probability, specified by the influence function, is described
by the value of a certain generating functional. The state of
the environment only occurs explicitly in the expression for
the influence function through the appearance of its statisti-
cal operator, thereby allowing a unified discussion of the
influence of environments on phase coherence and thereby
on the transmission properties. An advantage of the approach
is that different environments are treated on an equal footing,
thereby simplifying comparison of similarities and differ-
ences.

We have calculated the influence function for various en-
vironments and parameter regimes using the developed
nonequilibrium generating functional technique. In order to
obtain analytical results we have concentrated on simple
resonant tunneling, and invoked the wide-band approxima-
tion. In the thermal case we obtained analytical results for
the broad resonance limit, the strong-coupling limit, the
high-temperature limit, and the weak-coupling and low-
temperature limit. The short-time approximation used in the
broad resonance, strong-coupling, and high-temperature lim-
its, and the long-time approximation invoked in the weak-
coupling and low-temperature limit were numerically dem-
onstrated to be good approximations. For the thermal case
we discussed the closed expression obtainable for the Ein-
stein model.

We studied the effect of a classical fluctuating en-
vironment on the tunneling process, the fluctuating level
model. The environment is here described by a Gaussian

distributed stochastic variable. The fluctuating level model
was shown to only capture the correlation part of the influ-
ence of the thermal environment, as the fluctuating level
model neglects the systematic part except for its average in-
fluence. We find in this case that the total transmission
coefficient is a Lorentzian with its width temperature broad-
ened.

We studied the effect of a harmonically varying external
field, and found the heights and widths of the Lorentzian
sidebands at all the harmonics of the classical force.

For the coherent state case we also obtain a closed expres-
sion for the influence function, and we showed that the co-
herent state case is an intermediate situation sharing features
of both the zero-temperature Einstein case and the external
field case.

Finally we studied the suppression of quantum interfer-
ence by considering a simple model of two resonant levels
situated on the two arms of a ring connected to two external
reservoirs. The quantum interference was monitored by hav-
ing the ring enclosing a magnetic flux. When calculating the
transmission probability we obtained contributions corre-
sponding to tunneling through either arm and an interference
contribution. We found that the interference term vanishes in
the thermal bath and fluctuating level cases even for the
slightest energy exchange between system and environment.
The model thus represents a case where dissipation com-
pletely destroys quantum interference. In the case of a
nondissipative environment, e.g., a classical force, there is no
loss of phase coherence, and there is therefore always an
interference contribution, even if energy is not conserved in
the transition.

In conclusion, we have demonstrated the efficiency of the
developed nonequilibrium generating functional technique
for evaluating the environmental influence on coherent quan-
tum processes.

ACKNOWLEDGMENTS

We ~P.A., J.R.! acknowledge stimulating discussions with
Karl Hess and Tony Leggett. This work was supported by the
Swedish Natural Research Council through Contracts No.
F-AA/FU 11084-302~P.A.! and No. F-AA/FU 10199-306
~J.R.!.

1J. Bardeen, Phys. Rev. Lett.6, 57 ~1961!.
2K. Huang and A. Rhys, Proc. R. Soc. London Ser. A204, 406

~1950!; P.W. Anderson,ibid. 124, 41 ~1961!; U. Fano,ibid. 124,
1866 ~1961!; J.N.L. Connor, Mol. Phys.15, 37 ~1968!; C.-O.
Almbladh and P. Minnhagen, Phys. Rev. B17, 929~1978!; M.Y.
Azbel, Solid State Commun.45, 527 ~1983!.

3L.I. Glazman and R.I. Shekhter, Zh. E´ksp. Teor. Fiz.94, 292
~1988! @Sov. Phys. JETP67, 163 ~1988!#.

4N.S. Wingreen, K.W. Jacobsen, and J.W. Wilkins, Phys. Rev.
Lett. 61, 1396~1988!; Phys. Rev. B40, 11 834~1989!.

5M. Jonson, Phys. Rev. B39, 5924 ~1989!; B.Y. Gelfand, S.
Schmitt-Rink, and A.F. Levi, Phys. Rev. Lett.62, 1683~1989!;
W. Cai, T.F. Zhang, P. Hu, B. Yudanin, and M. Lax,ibid. 63, 418

~1989!; Y. Zohta, Solid State Commun.72, 931 ~1989!; W. Cai,
T.F. Zhang, P. Hu, M. Lax, K. Shum, and R.R. Alfano, Phys.
Rev. Lett.65, 104~1990!; L.Y. Chen and C.S. Ting, Mod. Phys.
Lett. B 4, 1077~1990!; R. Berkovitz and S. Feng, Phys. Rev. B
45, 97 ~1992!.

6R. Landauer, IBM J. Res. Dev.1, 233 ~1957!, Philos. Mag.21,
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