
Spin-ordering and magnon collective modes for two-dimensional electron lattices
in strong magnetic fields

R. Côté
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Québec, Canada J1K-2R1

A. H. MacDonald
Department of Physics, Indiana University, Bloomington, Indiana 47405

~Received 23 August 1995!

We study the spin-ordering and the magnon collective modes of the two-dimensional Wigner crystal state at
strong magnetic fields. Our work is based on the Hartree-Fock approximation for the ground state and the
time-dependent Hartree-Fock approximation for the collective modes. We find that the ground state is ferro-
magnetic, i.e., that all spins are aligned atT50 even when the electronicg factor is negligibly small. The
magnon calculations show that the spin stiffness is much smaller in the crystal state than in fluid states which
occur at nearby Landau-level filling factors.

I. INTRODUCTION

At sufficiently low electron densities or in sufficiently
strong magnetic fields, electrons will crystallize at low
temperatures.1,2 It is generally expected that in the~Wigner!
crystal state, electronic spins will be either ferromagnetically
or antiferromagnetically ordered.3,4 There has long been
theoretical interest5,6 in the rather subtle physics which de-
termines how the electronic spins are ordered. For two-
dimensional electrons in the Wigner crystal state at zero
magnetic field a series7,8 of variational and Green’s function
Monte Carlo calculations have not led to definitive conclu-
sions concerning the nature of the magnetic order. The
energetically preferred spin ordering has been shown to de-
pend very much on the lattice structure of the electron crystal
and, unfortunately, the difference in energy between states
with different spin order on a hexagonal lattice~which is
expected to be the ground-state lattice of the Wigner crystal!
is smaller than the accuracy of the Monte Carlo
calculations.8 To our knowledge, there are no previous nu-
merical studies of the spin structure of the Wigner crystal in
the strong-field regime. The variational Monte Carlo calcu-
lations cited above considered, in the strong-field limit, only
the spin-polarized hexagonal lattice and investigated ex-
change, correlation, and Landau-level-mixing effects.8

In this paper we discuss magnetic order for two-
dimensional electrons in the limit of strong perpendicular
magnetic fields where all electrons are confined to the lowest
quantized kinetic energy Landau level. In this limit, the state
of the electrons depends on the Landau-level filling factor
n rather than the electron density and, except for a narrow
interval surroundingn50.2, the electrons form a Wigner
crystal state2 for n smaller than'0.23. @n[N/Nf where
N is the number of electrons andNf5SB/F0[S/(2p l 2) is
the Landau-level degeneracy. HereS is the area of the sys-
tem, B is the magnetic field strength,l is the magnetic
length, andF05hc/e is the magnetic flux quantum.# We
find, partly on the basis of Hartree-Fock approximation

~HFA! calculations, that in this regime the Wigner crystal
state will always be ferromagnetic. The Hartree-Fock
ground-state wave function does not contain the important
correlations that give rise to the magnetophonon and spin-
wave modes of the crystal. We can check, however, the sta-
bility of the spin-polarized lattice by evaluating the magnon
spectrum of the Wigner crystal using a time-dependent
Hartree-Fock approximation~TDHFA!. Within the limits of
our numerical approach, we find that the polarized lattices
remain stable at small filling factors. Moreover, in this limit,
the spin-wave modes are very well described by a Heisen-
berg model where electrons are localized on their lattice site
with an effective exchange integralJTDHFA that we compute
for different filling factors. From the value of this effective
exchange integral, we can derive the spin stiffness of the
Wigner crystal state and compare its value with the spin
stiffness of ferromagnetic electron fluid states at nearby fill-
ing factors. This comparison shows that the spin stiffness of
the liquid is much larger than that of the solid. This is so
because the exchange energy is larger when the electrons are
free to move around and come closer to each other.

Our paper is organized as follows. In Sec. II we outline
the formalism we use to perform the HFA and TDHFA cal-
culations for, respectively, the ground state and spin waves of
the system. We are able to enormously simplify the calcula-
tions by adapting an approach we developed9 previously to
the situation of interest here. In Sec. III we present numerical
results for the magnetic ground state of the square and trian-
gular Wigner crystal states and discuss differences between
magnetic-ordering tendencies in zero-field and strong-field
limits. Our results for magnon dispersion relation are pre-
sented and discussed in Sec. IV. Section V contains a brief
summary of this work.

II. HARTREE-FOCK AND TIME-DEPENDENT
HARTREE-FOCK APPROXIMATIONS

A. Hartree-Fock approximation ground state

The formalism outlined in this section is a straightforward
generalization of one which we developed originally9 to de-
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scribe phonon modes in the Wigner crystal state, and which
has previously been generalized in other directions10,11 to
describe double-layer quantum Hall systems and edge exci-
tations of the Wigner crystal. We outline the main steps in
the development of the formalism and refer the reader to Ref.
9 for further details.

We consider a two-dimensional electron gas~2DEG! in a
magnetic fieldB52Bẑ which is assumed to be strong
enough so that we can make the usual approximation of con-
sidering only the lowest Landau level. In the Landau gauge,
the Hamiltonian of the 2DEG is then~we set\51 through-
out this paper!

H5(
a,X

eaca,X
† ca,X1

1

2S(q (
X1 , . . . ,X4

(
a,b

V~q!

3^X1uexp~ iq•r !uX4&^X2uexp~2 iq•r !uX3&

3ca,X1
† cb,X2

† cb,X3
ca,X4

, ~1!

wherea,b51 ~up!, 2 ~down! are spin indices and the low-
est Landau level has the energy

ea5
vc

2
2

ag*mbB

2
. ~2!

As usual,vc5eB/m* c is the cyclotron frequency andm*
and g* are the effective mass andg factor of the electron
appropriate to the two-dimensional electron layer.4 For a fi-
nite system, the allowed values of the quantum numberX are
separated by 2p l 2/Ly . Neglecting the finite thickness of the
two-dimensional electron layer, we takeV(q)52pe2/q, the
two-dimensional Fourier transform of the Coulomb potential.

Making the usual Hartree-Fock pairing of the second-
quantized operators in the Hamiltonian of Eq.~1! and allow-
ing for the possibility of broken translational symmetry and
spin magnetic order in the ground state, we obtain

H5Nf(
a

eara,a~0!1Nf(
q

(
a,b

Va,b~q!ra,b~q!, ~3!

where we have introduced the operators

ra,b~q!5Nf
21(

X
exp~2 iqxX2 iqxqyl

2/2!ca,X
† cb,X1qyl

2,

~4!

which are related to the density and spin operators by the
relations

n~q!5Nfe
2q2l2/4@r11~q!1r22~q!#,

Sz~q!5
1

2
Nfe

2q2l2/4@r11~q!2r22~q!#,

~5!

S1~q!5Nfe
2q2l2/4r12~q!,

S2~q!5Nfe
2q2l2/4r21~q!.

The matrix elements of the Hartree-Fock self-consistent field
in Eq. ~3! are given by

V11~q!5@H~q!2X~q!#^r11~2q!&1H~q!^r22~2q!&,

V22~q!5@H~q!2X~q!#^r22(2q)&1H~q!^r11~2q!&,
~6!

V12~q!52X~q!^r21~2q!&,

V21~q!52X~q!^r12~2q!&,

with the Hartree (H) and Fock (X) interactions defined by

H~q!5S e2l D S 1ql De2q2l2/2~12dq,0!,

X~q!5S e2l DAp

2
e2q2l2/4I 0~q

2l 2/4!, ~7!

whereI 0(x) is the modified Bessel function of the first kind
and the factor (12dq,0) comes from the neutralizing positive
background.

The ordered state is defined by the set of order parameters
$^ra,b(q)&%. In the case of interest here, i.e., for a Wigner
lattice, these parameters are nonzero only whenq5G, a re-
ciprocal lattice vector of the crystal. To calculate the
^ra,b(q)& ’s, we define the 232 single-particle Green’s func-
tion

Ga,b~X,X8,t!52^Tca,X~t!cb,X8
†

~0!& ~8!

and its Fourier transformGa,b(q,t) by

Ga,b~q,t!5Nf
21(

X,X8
Ga,b~X,X8,t!

3expF2
1

2
iqx~X1X8!GdX8,X2qyl

2, ~9!

so that

^ra,b~q!&5Gb,a~q,t502!. ~10!

Using the Heisenberg equation of motion (]/]t)
3(•••)5@H2mN,(•••)# wherem is the chemical potential
of the electrons which we measure with respect to the kinetic
energy of the first Landau level, we obtain the equation of
motion for the single-particle Green’s function~in an obvi-
ous matrix notation!:

F ~ ivn1m!I2LS 1 0

0 21D GG~q,vn!2(
q8

expF12 iq3q8l 2G
3V~q82q!G~q8,vn!5Idq,0 , ~11!
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where vn is a fermionic Matsubara frequency,
L[g*mbB/2, andI is the 232 unit matrix.G andV are the
232 matrices defined in Eqs.~8! and ~6!.

Equation~11! is very general. For example, it can be used
to consider complex spin-texture states such as the Skyrme
crystal studied in Ref. 10, where the average values of all
three components of the average spin are space dependent.
Although we concentrate, in this work, on simple spin-
structure states where Eq.~11! can be reduced to only one
uncoupled equation, we explain here our numerical approach
for the general case.

We represent byq1 ,q2 ,q3 , . . . ,qN the wave vectors de-
fining the ordered state~in principle,N→` but in the nu-
merical calculation, a suitable cutoff is chosen forN). We
choose q150 and define the vectorG̃a,b[„Ga,b(q1),
Ga,b(q2),Ga,b(q3), . . . ,Ga,b(qN)…. Since in Eq. ~11!,
G11 ~or G22) is coupled toG21 ~or G12) only, we can
simplify Eq. ~11! by defining the 2N-component vectors
G̃1[(G̃11 ,G̃21) and G̃2[(G̃12 ,G̃22). We finally get a
set of two coupled integral equations that we write in matrix
form as

~ ivn1m! Ĩ S G̃11

G̃21
D 2F̃S G̃11

G̃21
D 5S 1̃

0̃
D , ~12!

and

~ ivn1m! Ĩ S G̃12

G̃22
D 2F̃S G̃12

G̃22
D 5S 0̃

1̃
D . ~13!

In these equations,Ĩ is the 2N32N unit matrix,
1̃[(1,0,0,. . . ,0) and 0˜[(0,0,0,. . . ,0) are, respectively,
the N-component unit and null vectors, andF̃ is the
2N32N matrix defined by

F̃[FLdq,q81A11~q,q8! A12~q,q8!

A21~q,q8! 2Ldq,q81A22~q,q8!
G ,
~14!

where

Aa,b~q,q8!5expF12 iq3q8l 2GVa,b~q82q!. ~15!

Note that sinceAa,b(q,q8)5@Ab,a(q8,q)#* , F̃ is a Her-
mitian matrix. It follows that Eqs.~12! and ~13! can be
solved by making the unitary transformationF̃5UDU†,
whereUU†51 andD is the diagonal matrix containing the
eigenvalues ofF̃. Following Ref. 9, we have for the order
parameters (i51,2, . . . ,N)

^r11~qi !&5 (
k51

k5kmax

Ui ,kU1,k* ,

^r12~qi !&5 (
k51

k5kmax

Ui1N,kU1,k* ,

~16!

^r21~qi !&5 (
k51

k5kmax

Ui ,kUN11,k* ,

^r22~qi !&5 (
k51

k5kmax

Ui1N,kUN11,k* .

The value ofkmax is obtained from the conditions

^r11~0!&5n1 ~17!

and

^r22~0!&5n2 , ~18!

the filling factors for spin up and down. It is easy to show
from Eq. ~16! that, atT50 K, the following sum rules hold:

(
q

@ u^r11~q!&u21u^r12~q!&u2#5n1 , ~19!

and

(
q

@ u^r21~q!&u21u^r22~q!&u2#5n2 . ~20!

We note that, except for simple cases such as fully polar-
ized or unpolarized crystals, the filling factorsn1 andn2 are
not known from the beginning. The only boundary condi-
tions are the constraints

^r11~0!&1^r22~0!&5n ~21!

and

^r12~0!&5^r21~0!&50 if LÞ0. ~22!

Also, by definition,

^r12~q!&5^r21~2q!&* . ~23!

To find n1 andn2 , Eqs.~12! and~13! must be solved self-
consistently for given values ofn1 and n2 until a conver-
gent solution is obtained. The process has to be repeated for
different sets ofn1 and n2 values until the lowest-energy
solution is found. In this way we can determine the lowest-
energy single Slater determinant consistent with any as-
sumed translational and magnetic symmetry. The Hartree-
Fock energy per particle of a particular ground-state
configuration~with respect to the kinetic energy of the low-
est Landau level! is
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E5LS n22n1

n D1
1

2n(q $@H~q!2X~q!#@ u^r11~q!&u2

1u^r22~q!&u2#1H~q!@^r11~q!&^r22~2q!&1H.c.#

22X~q!u^r12~q!&u2%. ~24!

In the case of a fully spin-polarized Wigner crystal, only
$^r11(G)&%Þ0 (G is a reciprocal lattice vector! and Eq.
~11! simplifies to

~ ivn1m2L!G11~G,vn!2(
G8

F̃~G,G8!G11~G8,vn!

5dG,0 , ~25!

whereF̃ is now theN3N matrix

F̃~G,G8!5expF12 iG3G8l 2GV11~G2G8!, ~26!

with

V11~G!5@H~G!2X~G!#^r11~G!&. ~27!

The ground-state energy per particle, in this case, is simply

E1152L1
1

2n(G @H~G!2X~G!#u^r11~G!&u2.

~28!

B. Time-dependent Hartree-Fock approximation collective
excitations

To determine the collective excitation energies of the or-
dered state, we define the response functions

xabgd~q,q8;t!52g^Tr̃ab~q,t!r̃gd~2q8,0!&, ~29!

where r̃ab5rab2^rab&. By making use of the commuta-
tion relation9 of the operatorsrab(q) and of the HF Hamil-
tonian of Eq.~3!, we obtain an equation of motion for the
response functions that corresponds to the HFA which we
denote byx0. We get ~repeated spin indices are summed
over!

@ iVn1~ea2eb!#xabgd
0 ~q,q8;Vn!5db,ge

2 iq3q8 l2/2^rad~q2q8!&2da,de
iq3q8 l2/2^rgb~q2q8!&2(

q9
Vka~q92q!e2 iq3q9 l2/2

3xkbgd
0 ~q9,q8;Vn!1(

q9
Vbk~q92q!eiq3q9 l2/2xakgd

0 ~q9,q8,Vn!, ~30!

whereVn is a boson frequency.
To calculate the response functions in the time-dependent

Hartree-Fock approximation~TDHFA!, and so include the
correlations that give rise to phonons and magnons, we need
to sum a set of ladder and bubble diagrams.9 The final equa-
tion for x can be expressedsolely in terms the order param-
eters of the crystal phase,

xabgd~q,q8;Vn!5x̃abgd~q,q8;Vn!1(
q9

x̃abkk~q,q9;Vn!

3H~q9!xjjgd~q9,q8;Vn!, ~31!

where the irreducible response function is given by

x̃abgd~q,q8;Vn!5xabgd
0 ~q,q8;Vn!2(

q9
xabkj
0 ~q,q9;Vn!

3X~q9!x̃jkgd~q9,q8;Vn!. ~32!

The spin and density response functions are obtained, as
usual, from the analytic continuationiVn→v1 id. The dis-
persion relation of the collective modes are then found by
tracking the poles of the response functions at different val-
ues of the wave vectorq in the Brillouin zone.

In the case of a fully polarized state, the only nonzero
response functions arex1221 ,x2112 , andx1111 and so
the usual spin-flip and density-density response functions are
given by

x12~q,q8;Vn!5ge2q2l2/4e2q82l2/4x1221~q,q8;Vn!
~33!

and

xzz~q,q8;Vn!5
1

4
xnn~q,q8;Vn!

5
g

4
e2q2l2/4e2q82l2/4x1111~q,q8;Vn!.

~34!

They obey the TDHFA equations of motion

(
q9

$ iVndq,q92CA~q,q9!2DA~q,q9!@H~q9!2X~q9!#%

3x1111~q9,q8;Vn!5DA~q,q8! ~35!
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and

(
q9

@~ iVn22L!dq,q92CB~q,q9!1DB~q,q9!X~q9!#

3x1221~q9,q8;Vn!5DB~q,q8!, ~36!

where we have defined

DA~q,q8!522i sin@~q3q8!l 2/2#, ~37!

DB~q,q8!5^r11~q2q8!&e2 i ~q3q8!l2/2, ~38!

CA~q,q8!52i ^r11~q2q8!&@H~q2q8!2X~q2q8!#

3sin@~q3q8!l 2/2#, ~39!

CB~q,q8!5^r11~q2q8!&X~q2q8!cos@~q3q8!l 2/2#

1^r11~q2q8!&@2iH ~q2q8!2 iX~q2q8!#

3sin@~q3q8!l 2/2#. ~40!

~For a Wigner crystal,q→k1G, q8→k1G8, etc., where
k is a vector restricted to the first Brillouin zone of the crys-
tal.! The problem of calculating the spin-flip and density-
density response functions is then reduced to a matrix-
diagonalization problem. The two response functions
decouple. The matrix eigenvalues are the collective excita-
tions associated with the two response functions, phonons in
the case ofxnn and magnons in the case ofx12.

III. HARTREE-FOCK APPROXIMATION FOR THE
GROUND STATE

We first apply the above formalism to examine the nature
of the magnetic order in the Wigner crystal ground state. In
the Hartree-Fock approximation the ground state at strong
magnetic fields always has broken translational symmetry.13

This result of the Hartree-Fock approximation is an artifact.
As we mentioned in the Introduction, the true ground state
has broken translational symmetry only forn,0.23.14 Nev-
ertheless, as we discuss further below, the Hartree-Fock ap-
proximation does describesthe ground statereasonably ac-
curately when the ground stateis a Wigner crystal. Of course
the Hartree-Fock approximation completely misrepresents
the excitation spectrum of the Wigner crystal, since it misses
the phonon and magnon collective modes captured by the
time-dependent Hartree-Fock approximation.

In two dimensions, Coulomb interactions favor a triangu-
lar lattice for the Wigner crystal.12 We will find that the en-
ergy scale associated with magnetic order is much smaller
than the Coulomb energy scale. We therefore expect the
structure of the Wigner crystal to be the triangular lattice
structure dictated by Coulomb interactions. We also expect
that the interactions between the spins on the triangular lat-
tice sites will be predominantly nearest neighbor since the
overlap between wave functions on different sites is quite
small in a strong magnetic field. We check this approxima-

tion below by comparing the dispersion relation of the spin
waves in the TDHFA with that given by a Heisenberg model
with only nearest-neighbor exchange coupling. The ground
state for two-dimensional spin-1/2 particles with nearest-
neighbor interactions on a triangular lattice is expected to
have long range order for both ferromagnetic and antiferro-
magnetic interactions.15 However, because of frustration, the
order is rather subtle for the antiferromagnetic case.~The
triangular lattice isnot a bipartite lattice.! Our primary ob-
jective in this subsection is to determine whether the inter-
action is ferromagnetic or antiferromagnetic by comparing
the energy of these two states. For that purpose it is more
useful to consider the case of two-dimensional electrons on a
square lattice since it is bipartite and both antiferromagnetic
and ferromagnetic states have a simple structure. We do so
even though the ground state of the two-dimensional electron
solid does not occur in this structure.

A. Maki-Zotos wave function

It is instructive to begin by generalizing the wave function
for spinless electrons employed by Maki and Zotos16 in their
study of the strong-field Wigner crystal. We define

C5~N! !21/2detucRj
~r i !xnj

i u. ~41!

HereRj is the j th lattice vector,

cR~r !5
1

A2p l 2
expS 2ur2Ru222i ~xRy2yRx!

4l 2 D , ~42!

is the lowest-Landau-level wave function17 for an electron
whose quantized cyclotron orbit is centered onR, and
xn5„cos(u/2),sin(u/2)exp(if)… is a spinor oriented in the
n5„sin(u)cos(f),sin(u)sin(f),cos(u)… direction. In this wave
function the cyclotron orbits of electrons near different lat-
tice sites are uncorrelated and the electron spin orientation at
a given lattice site is arbitrary. In the range ofn where the
ground state is a Wigner crystal it is an excellent
approximation16,18 to ignore the lack of orthogonality be-
tween cyclotron orbits centered at different lattice sites.
Making this approximation, it is easy to derive an expression
for

E[
^Cu( i, je

2ur i2r j u21uC&

^CuC&
. ~43!

In Eq. ~43!, we have dropped the Zeeman energy, which can
easily be added if the electronicg factor is nonzero. The fact
that the kinetic energy, taken as the zero of energy above, is
quantized is important in determining the favored magnetic
order. Following Maki and Zotos we find that

E5
1

2(iÞ j
F I ~ uRj2Ri u!2S 11ni•nj

2 D J MZ~ uRj2Ri u!G ,
~44!

where
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I ~R!5S e2l D Ap

2
exp~2R2/8l 2!I 0~R

2/8l 2! ~45!

and

JMZ~R!5exp~2R2/4l 2!I ~R!. ~46!

In this equationI (R) and J(R) are, respectively, the direct
and exchange two-body matrix elements of the Coulomb in-
teraction for lowest-Landau-level cyclotron orbits whose
centers are separated byR. The explicit expression for the
matrix element in the exchange term, which is sensitive to
the relative orientations of the spins on the two sites, is

JMZ~ uRj2Ri u!5e2EdrEdr 8 cRj
* ~r !cRj

~r 8!cRi
* ~r 8!cRi

~r !

ur2r 8u
.

~47!

For R@ l ,

JMZ~R!'
e2

R
exp~2R2/4l 2!. ~48!

This approximate expression forJMZ(R) is accurate to better
than 5% even for neighboring sites over the range of
Landau-level filling factors where the ground state is a
Wigner crystal.

It is evident from Eq.~44! that if the ground state is ap-
proximated by the Maki-Zotos wave function, a ferromag-
netic state in which all spins are parallel will be energetically
favored. The energy increase when the relative orientation of
spins on two sites separated byR changes from parallel to
antiparallel is J(R). For similar single-Slater-determinant
variational wave functions at zero magnetic field, the ten-
dency would be to favor antiferromagnetic orientations on
neighboring sites,6–8 except possibly when multisite ring ex-
changes become important.~Multisite ring exchanges are
less important for the strong-magnetic-field Wigner crystal
because magnetic confinement results in orbitals which are
more strongly localized around lattice sites.! In the weak-
field case, having opposite spins on neighboring sites reduces
the kinetic energy density required by the Pauli exclusion
principle in the region between the sites. In the strong-
magnetic-field limit, the kinetic energy is quantized and is
independent of the spin configuration so this mechanism fa-
voring antiferromagnetism is not operative. Nevertheless, the
Maki-Zotos wave function is a single Slater determinant and
conclusions based upon its use should be examined critically.
It is known, for example, that correlations can result in spin-
singlet fluid ground states,19 whereas the Hartree-Fock ap-
proximation would always predict ferromagnetic ground
states. At zero magnetic field, the contribution from low-
energy, long-wavelength phonon modes to the zero-point
motion gives rise to long-range correlations which, for ex-
ample, make the static structure factor vanish more quickly
(}q3/2) than it would for a system with short-range interac-
tions. At strong magnetic field, even stronger correlations,
which make the static structure factor vanish asq2, result
from the contribution to the zero-point motion of the collec-
tive cyclotron mode of all electrons.~In a Jastrow-Slater

variational wave function such as that used by Zhu and
Louie8 the correlation factors would have to have a logarith-
mic spatial dependence in order to capture the correct long-
distance ground-state correlations.! We cannot completely
rule out on the basis of our calculations the possibility that
correlations could invalidate our conclusion that the ground
state is ferromagnetic. However, we consider this to be ex-
tremely unlikely.

B. Self-consistent Hartree-Fock calculations

One possible mechanism in favor of antiferromagnetism
is the possibility of spreading the charge associated with a
given lattice site more widely in the case of antiferromag-
netic configurations, which could reduce the electrostatic en-
ergy. To probe the competition a little more deeply we have
performed self-consistent Hartree-Fock calculations, based
on the formalism of the previous section, comparing the en-
ergy of ferromagnetic and antiferromagnetic states on a
square lattice. We now discuss the results of these calcula-
tions.

In the Hartree-Fock approximation, the spin order is uni-
directional on a square lattice for both ferromagnetic and
antiferromagnetic interactions. We choose a spin-
quantization axis which is along the direction of the Zeeman
coupling if one is present and is otherwise arbitrary. This
allows us to set the order parameters which are off-diagonal
in the spin indices to zero and simplify our calculation. Let
a0 be the lattice constant of the ferromagnetic square lattice
with densityn51/a0

2 such that 2pnl25n. In the antiferro-
magnetic case we assume that the spin density is oppositely
directed on the two sublattices@which have lattice constant
A2a0 , and have a relative shift ofa5A2( 12, 12)a0# so that

^r22~G!&5e2 iG•a^r11~G!& ~49!

whereG is asublatticereciprocal lattice vector.~We choose
our coordinate system so that the primitive lattice vectors of
the sublattice are along the Cartesian axes.! Equation ~11!
can again be simplified to a single equation:

~ ivn1m!G11~G,vn!2(
G8

F̃~G,G8!G11~G8,vn!5dG,0 ,

~50!

where

F̃~G,G8!5expF12 iG3G8l 2G@~11e2 iG•a!H~G!2X~G!#

3^r11~2G!&. ~51!

The ground-state energy per particle becomes

E125
1

n(G $H~G!@11cos~G•a!#2X~G!%u^r11~G!&u2.

~52!

We have solved these equations self-consistently. Because
of the variational nature of the Hartree-Fock approximation,
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these solutions provide us with the lowest-energy single
Slater determinant consistent with the assummed magnetic
and translational broken symmetry. In particular, the solu-
tions to these equations will always give a lower energy than
the energy for the corresponding Maki-Zotos wave function.
The optimization process implicit in obtaining a self-
consistent solution of the Hartree-Fock equations results in
cyclotron orbits on each lattice site which are distorted by
their average environments, including their magnetic envi-
ronments, in a way which minimizes the total interaction
energy. It is still true, however, that the cyclotron orbits on
different sites are not correlated with each other. The error
introduced as a consequence can be estimated by using a
harmonic approximation for the strong-field Wigner crystal,
which is reasonably accurate from an energetic point of view
throughout the regime where the ground state is an electron
crystal. In the harmonic approximation the many-body
Schrödinger equation can be solved exactly and the ground-
state energy is the sum of the classical Madelung energy and
the quantum zero-point energy, i.e.,

Eharmonic520.78213n1/210.24101n3/2, ~53!

for the hexagonal lattice. The Hartree-Fock approximation
describes the Madelung term exactly~in the limit n→0, the
HFA energy coincides with the classical energy of a point
lattice! and overestimates20 the zero-point energy by approxi-
mately 25%~at n50.2).

The results of our calculations are summarized in Tables I
and II. In Table I, we list the ground-state energy per electron
in the HFA for the square lattice antiferromagnetic~SLA!
and ferromagnetic~SLF! states as well as for the triangular
lattice ferromagnetic~TLF! state. Table II contains a similar
calculation using a simplified form of the Maki and Zotos
wave function where we have neglected the overlapping be-
tween two wave functions centered on different sites so that
the single-electron density can be approximated by

^n~r !&5(
i

ucRi
~r !u25

1

2p l 2(i e2~r2Ri !
2/2l2, ~54!

or, equivalently, in the ferromagnetic case

^r~G!&MZ5ne2G2l2/4. ~55!

~For the SLA case,n→n/2 and theG’s are replaced by the
sublattice reciprocal lattice vectors.! We use the order param-
eters defined by Eq.~55! in Eq. ~28! to compute the Maki-
Zotos ground-state energies tabulated in Table II. We remark
that this procedure is exactly equivalent to computing Eq.
~44! ~when the interaction with a positive homogeneous
background of charges is added to this last equation!. Note
also that these results include only the Coulomb energy.
These tables report also the results of calculations performed
for filling factors where the ground state isnotbelieved to be
a Wigner crystal. These large-n results are intended to illus-
trate trends in the self-consistent Hartree-Fock approxima-
tion solutions and not to be physically realistic.21 In order to
obtain a stable Wigner crystal state in the Hartree-Fock ap-
proximation and to get a convergent result for its ground-
state energy, we need to consider a large number of order
parameters or, equivalently, of reciprocal lattice vectors
~RLV’s!. The number of RLV’s to be considered increases as
the filling factor gets small and at some point, the calculation
becomes numerically prohibitive. Moreover, the number of
RLV’s that has to be taken into account is bigger for the
antiferromagnetic lattice than in the ferromagnetic lattice
since the antiferromagnetic lattice with filling factorn is
made of two sublattices with filling factorn/2. Typically,
while 100 RLV’s is sufficient to obtain the ground-state en-
ergy for filling factors aroundn51/3 in the ferromagnetic
case, we need to consider about 800 RLV’s to obtain the
ground-state energy to the accuracy reported in Table I~ac-
curacy which is necessary for comparison with the Maki-
Zotos energy!, for filling factor n51/10 in the antiferromag-
netic lattice.

We see that for the larger filling factors, the difference in
energy between Hartree-Fock square lattice ferromagnetic
and antiferromagnetic states,DEspin5(ESLF2ESLA)/ESLF,
agrees quite closely with what would be predicted by the
Maki-Zotos wave function@Eq. ~55!#. At smaller filling fac-
tors, however, the Hartree-Fock energy difference between

TABLE I. Energy of the square and triangular ferromagnetic
states~SLF,TLF! and of the antiferromagnetic state on the square
lattice ~SLA! in the Hartree-Fock approximation in units ofe2/ l .
The relative energy difference between the ferromagnetic and anti-
ferromagnetic states on the square lattice is given byDEspin while
the relative difference in energy between the ferromagnetic state on
the triangular and square lattices is given byDECoulomb.

n ESLF ESLA ETLF

DE spin

~%!
DECoulomb

~%!

1/3 -0.3857672 -0.3823134 -0.3884928 0.90 0.70
1/4 -0.3484399 -0.3478963 -0.3511452 0.16 0.77
1/5 -0.3196321 -0.3195124 -0.3219969 0.037 0.73
1/6 -0.2964916 -0.2964471 -0.2985717 0.015 0.70
1/7 -0.2775104 -0.2774874 -0.2793787 0.0083 0.67
1/8 -0.2616473 -0.2616346 -0.2633555 0.0049 0.65
1/10 -0.2365415 -0.2365379 -0.2380218 0.0015 0.62

TABLE II. Energy of the square and triangular ferromagnetic
states~SLF,TLF! and of the antiferromagnetic state on the square
lattice ~SLA! in the Maki-Zotos approximation in units ofe2/ l . The
relative energy difference between the ferromagnetic and antiferro-
magnetic states on the square lattice is given byDEspin while the
relative difference in energy between the ferromagnetic state on the
triangular and square lattices is given byDECoulomb.

n ESLF ESLA ETLF

DE spin

~%!
DECoulomb

~%!

1/3 -0.3858614 -0.3814086 -0.3885208 1.15 0.68
1/4 -0.3482640 -0.3474804 -0.3511413 0.23 0.82
1/5 -0.3194893 -0.3193454 -0.3219900 0.045 0.78
1/6 -0.2964083 -0.2963812 -0.2985680 0.0091 0.72
1/7 -0.2774646 -0.2774594 -0.2793770 0.0019 0.68
1/8 -0.2616223 -0.2616213 -0.2633548 0.00038 0.66
1/10 -0.2365341 -0.2365340 -0.2380216 0.000016 0.63
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these two spin states is much bigger than what would be
predicted by the Maki-Zotos wave function. The energy re-
duction due to the added variational freedom compared to
the Maki-Zotos wave function is larger for the ferromagnetic
state than for the antiferromagnetic state and this leads to an
increased energy difference between the two states.@See also
Table III where, as discussed below,JMZ is proportional to
(ESLF2ESLA) evaluated with the Maki-Zotos wave function
and JHFA is proportional to (ESLF2ESLA) evaluated in the
HFA.22# In both the Makis-Zotos and HF approximations, the
ferromagnetic state has the lowest energy. In Fig. 1, we plot
the differencein density: ^n(r )&HFA2^n(r )&MZ for the SLF
and SLA at filling factorn51/8. It is clear from this figure
that the HFAminimizes the Coulomb energy in both the SLF
and SLA cases by removing charges along the direction of
the nearest-neighbor sites and putting them along the direc-
tion of the next-nearest-neighbor sites. This is just what we
expect at such a small filling factor, where overlap between
wave functions on different sites is very small and the
ground-state energy is dominated by the~direct! Coulomb
interaction. According to our calculations more charge redis-
tribution occurs in the ferromagnetic case. For the triangular
lattice, a similar calculation gives a much smaller difference
in densities, reflecting a loss in the variational freedom due
to the higher coordination number of the triangular lattice.

We remark that similar self-consistent calculations for a
single-band Hubbard model at half filling would find the
antiferromagnetic state to be lower in energy, correctly re-
flecting the superexchange coupling in that system.23We also
see that, as anticipated above, the difference between the
square lattice ferromagnetic state and the triangular lattice
ferromagnetic state energy,DECoulomb5(ETLF2ESLF)/
ETLF , is much larger than the difference between ferromag-
netic and antiferromagnetic states on the same lattice. This
energy difference is almost constant over the range of filling
factors considered here, decreasing slowly asn decreases.
Forn→0, DECoulombapproaches its Madelung energy value,
0.53%.12

IV. COLLECTIVE MODE CALCULATIONS

As we described above, the ground-state order parameters
can be used to calculate the spin-wave collective modes. In

the ferromagnetic ground state, we showed that the density
response functionxnn, or equivalently the longitudinal spin
response functionxzz5xnn/4, is uncoupled from the trans-
verse spin response functionx12. The poles of the longitu-
dinal spin response function are nothing but the phonons of
the Wigner crystal for which we have already computed the
dispersion relation in Ref. 9. The transverse spin excitations
are the magnon collective modes of the ferromagnetic
Wigner crystal. Figs. 2 and 3 show the TDHFA dispersion
relations for the SF and TF lattices, respectively, at different
values of the filling factor.@When the electronicg factor is
nonzero all magnon collective modes energies are increased
by the Zeeman gapg*mBB. In the simple collinear states
~SLF, SLA, and TLF! that we consider here, a small Zeeman
term has no effect on the calculation of the order param-
eters.# We remark that, because of the numerical approach
used in this work, it is not possible to obtain the dispersion
relations at very small filling factors without having to con-
sider a prohibitively large number of reciprocal lattice vec-
tors. For the square lattice, we were not able to obtain accu-
rate results forn,1/5 while for the triangular lattice
n51/7 was the lower limit.

TABLE III. Value of the exchange integral, in units ofe2/ l , on
the square lattice obtained from various approximations:J MZ is
from the definition of the exchange integral given in Eq.~60!,
JHFA is obtained from the energy difference between the ferromag-
netic and antiferromagnetic states@Eq. ~59!#, and J TDHFA is ob-
tained by fitting the TDHFA spin-wave dispersion relation with the
spin-wave dispersion relation of the Heisenberg model~see text!.

n JMZ JHFA JTDHFA

1/3 0.223 1022 0.173 1022 0.133 1022

1/4 0.393 1023 0.273 1023 0.243 1023

1/5 0.723 1024 0.603 1024 0.433 1024

1/6 0.143 1024 0.223 1024

1/7 0.263 1025 0.113 1024

1/8 0.503 1026 0.633 1025

1/10 0.193 1027 0.183 1025

FIG. 1. Difference in densities between the Hartree-Fock and
Maki-Zotos approximations at filling factorn51/8 and in units of
1/a0

2 for ~a! the ferromagnetic square lattice and~b! the antiferro-
magnetic square lattice. For the ferromagnetic state, the lattice sites
are indicated by gray circles. For the antiferromagnetic state, sites
on one sublattice are indicated by black circles and sites on the
other sublattice are indicated by empty squares. Note that the ori-
entation of the lattice differs in~a! and ~b!.
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It is interesting to compare these magnon dispersion rela-
tions with the dispersion relation of the spin waves of the
Heisenberg model where the spins are localized on the lattice
sites and the Hamiltonian is given by

H52J(
id

Si•Si1d . ~56!

~The summation is over the lattices sitesi and then0 nearest
neighbors of the lattice. Note that this convention for the
exchange constant results in double counting each neighbor
pair.! In that case,

v~k!52Jn0s~12gk!, ~57!

with

gk5
1

n0
(

d
eik•Rd, ~58!

ands51/2.
The solid lines in Figs. 2 and 3 show the dispersion rela-

tion obtained from a nearest-neighbor interaction Heisenberg
model with the interaction strength chosen to reproduce the
TDHFA numerical results. The fit is quite good and becomes
almost perfect at smaller filling factors.~The discrepancy at
n51/3 can be improved by fitting with nonzero next-nearest-
neighbor coupling.! The exchange integralJ TDHFA obtained
in this way from the TDHFA dispersion relation, for different
filling factors, is listed in Table III~square lattice! and Table
IV ~triangular lattice!. These tables also show values of the
exchange integral calculated in two other ways. From Table
I, we see that the ground-state energy is minimal for the
polarized square lattice. We can estimate the strength of the
exchange coupling from this energy difference as follows.
We assume that, as far as the magnetic degrees of freedom
are concerned, the Hartree-Fock solution yields an Ising ap-
proximation to the antiferromagnetic ground state, i.e., it
does not capture the quantum fluctuations which would be
present in a true antiferromagnetic ground state. It is then
easy to see24 that, for the square lattice,

JHFA5
ESLA2ESLF

2
. ~59!

This expression assumes that non-nearest-neighbor exchange
coupling is negligible.~Note that a similar calculation is not
possible for the triangular lattice because of frustration.! We
can also compute the exchange integral directly from the
Maki-Zotos wave function expression, Eq.~47!. This gives
Eq. ~45! or, using 2pnl25n with n51/aa0

2 @a51 ~SF! or
a5A3/2 ~TF!#,

FIG. 2. Dispersion relation of the spin waves of the ferromag-
netic square lattice obtained from the TDHFA and from the Heisen-
berg model at different filling factors. The dispersion relation is
plotted along the edges of the irreducible Brillouin zone~shown in
inset! of the square lattice with lattice spacinga. In units of
2p/a, G5(0,0), J5(1/2,1/2), andX5(1/2,0).

FIG. 3. Dispersion relation of the spin waves of the ferromag-
netic triangular lattice obtained from the TDHFA and from the
Heisenberg model at different filling factors. The dispersion relation
is plotted along the edges of the irreducible Brillouin zone~shown
in the inset! of the triangular lattice with lattice spacinga. In units
of 2p/a, G5(0,0), J5(1/A3,1/3), andX5(1/A3,0).

TABLE IV. Value of the exchange integral, in units ofe2/ l , on
the triangular lattice obtained from the various approximations de-
scribed in Table III.

n JMZ JTDHFA

1/3 0.993 1023 0.743 1023

1/4 0.143 1023 0.123 1023

1/5 0.203 1024 0.173 1024

1/6 0.293 1025 0.253 1025

1/7 0.443 1026 0.403 1026

1/8 0.673 1027

1/10 0.163 1028
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JMZ5S e2l D S p

4 D 1/2e23p/4anI 0S p

4an D . ~60!

Note that if the Maki-Zotos energies are used in Eq.~59!
instead of the HFA energies,JMZ is recovered exactly as long
as non-nearest-neighbor interactions are negligible.

For the TLF, the exchange integral obtained from the
TDHFA is only slightly smaller thanJMZ . For the square
lattice, the exchange integral obtained from the TDHFA is
smaller than bothJMZ and the HFA value over the range of
n where we are able to complete calculations. At smaller
filling factors, since the difference between the two spin
states decreases faster with the Maki-Zotos wave function
than with the HFA, the HF value ofJ is much larger than the
Maki-Zotos value. We expect the TDHFA result to remain
close to the HFA result in this regime. Unfortunately, we
cannot check this assumption numerically since we cannot
compute the TDHFA value ofJ at smaller filling factor~the
matrix size becomes prohibitively large!. However, since the
TDHFA is obtained from a functional differentiation of the
HFA, our assumption seems reasonable. In any case, the
present result shows clearly that, in the Wigner crystal, the
interaction between spins, at small filling factor, is mainly
from nearest neighbors.

In the small-wave-vector limit, the Heisenberg dispersion
relation on the triangular lattice is given byv(k)5 3

2

J(ka0)
2[D(kl)2 whereD52pA3J/n in units ofe2/ l . With

J given by JTDHFA as calculated above, we find that
D50.024 atn51/3 andD59.3 3 1023 at n51/5. These
values should be compared with those of the liquid state
whereD54p l 2rs /n wherers is the spin stiffness. For the
liquid state it is possible to express the spin stiffness in terms
of the pair correlation function19,25 and this has been evalu-
ated using a hypernetted-chain approximation for the liquid-
state pair correlation function in Ref. 25. For the liquid state
we find thatD50.035(e2/ l ) at n51/3 andD50.015(e2/ l )
at n51/5. We see that the spin stiffness is larger for the
liquid state and increasingly so as the filling factor decreases.
This result is consistent with the view of the strongly corre-
lated electron states as quantum melted crystals of electrons
whose size is smeared on a magnetic length scale by rapid
cyclotron motion. When long-range order is lost, the cyclo-

tron orbits will overlap more strongly on average and the
relative spin orientation of nearby electrons will assume a
larger importance.

V. SUMMARY

In the strong-magnetic-field limit, we have argued that the
lowest-energy spin state of the Wigner crystal is the ferro-
magnetic state. Our conclusion is based in part on a compari-
son of ferromagnetic and antiferromagnetic state energies of
square lattice Wigner crystal states calculated in the Hartree-
Fock approximation and in part on the observation that the
superexchange mechanism, which tends to favor antiferro-
magnetism, is absent in the strong-magnetic-field limit. The
spin-wave dispersion relations, which we compute in the
TDHFA, show that the ferromagnetic lattice is stable at fill-
ing factors where crystallization occurs. In this limit, the in-
teractions between spins on the lattice are dominated by
nearest-neighbor exchange coupling. Our results appear to
show that small distortions of the wave functions for elec-
trons on one lattice site, due to their interactions with elec-
trons on nearby lattice sites, are responsible for a large rela-
tive increase in the small exchange couplings at small filling
factors. A comparison with the liquid state at filling factors
n51/3 andn51/5 shows that the spin stiffness of the ferro-
magnetic liquid states which occur at these fillings is sub-
stantially larger than that of corresponding crystal states. In
closing we remark that the recent sucessful application26 of
nuclear-magnetic-resonance methods to two-dimensional
electron systems, suggests that the magnetic properties of
two-dimensional electron systems in the regime where the
Wigner crystal state occurs will soon be open to experimen-
tal investigation, so that our conclusions can be tested. These
experiments should open up a host of interesting new ques-
tions, related to disorder and thermal fluctuations.
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