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Spin-ordering and magnon collective modes for two-dimensional electron lattices
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We study the spin-ordering and the magnon collective modes of the two-dimensional Wigner crystal state at
strong magnetic fields. Our work is based on the Hartree-Fock approximation for the ground state and the
time-dependent Hartree-Fock approximation for the collective modes. We find that the ground state is ferro-
magnetic, i.e., that all spins are alignedTat 0 even when the electronig factor is negligibly small. The
magnon calculations show that the spin stiffness is much smaller in the crystal state than in fluid states which
occur at nearby Landau-level filling factors.

I. INTRODUCTION (HFA) calculations, that in this regime the Wigner crystal
state will always be ferromagnetic. The Hartree-Fock
At sufficiently low electron densities or in sufficiently ground-state wave function does not contain the important
strong magnetic fields, electrons will crystallize at low correlations that give rise to the magnetophonon and spin-
temperatured? It is generally expected that in thigvignen ~ Wave modes of the crystal. We can check, however, the sta-
crystal state, electronic spins will be either ferromagnetically?'y of the spin-polarized lattice by evaluating the magnon
or antiferromagnetically orderedf. There has long been spectrum of the Wigner crystal using a tlme.-dt.ependent
L . : . Hartree-Fock approximatiofTDHFA). Within the limits of
theoretical intereSf in the rather subtle physics which de- o, nymerical approach, we find that the polarized lattices
termines how the electronic spins are ordered. For tWoremain stable at small filling factors. Moreover, in this limit,
dimensional electrons in the Wigner crystal state at zerghe spin-wave modes are very well described by a Heisen-
magnetic field a serié§ of variational and Green’s function berg model where electrons are localized on their lattice site
Monte Carlo calculations have not led to definitive conclu-with an effective exchange integrdjpyes that we compute
sions concerning the nature of the magnetic order.  Théor different filling factors. From the value of this effective
energetically preferred spin ordering has been shown to deéxchange integral, we can derive the spin stiffness of the
pend very much on the lattice structure of the electron crystayVigner crystal state and compare its value with the spin
and, unfortunately, the difference in energy between stateSliiness of ferromagnetic electron fluid states at nearby fill-
with different spin order on a hexagonal lattiéehich is ing factors. This comparison shows that the spin stiffness of

! . the liquid is much larger than that of the solid. This is so
expected to be the ground-state lattice of the Wigner C')yStalbecause the exchange energy is larger when the electrons are

falcsrlg?lclyirsg _trr:)ar; rﬂllﬁo i;gur:(:{he:)ef a';zenoM?gteo Car‘]rlofree to move around and come closer to each other.
uiations. u wiedge, Previous nu- - g, paper is organized as follows. In Sec. Il we outline

merical studies of the spin structure of the Wigner crystal iy, tormalism we use to perform the HFA and TDHFA cal-
the strong-field regime. The variational Monte Carlo calcu-¢ations for, respectively, the ground state and spin waves of
lations 'C|ted above considered, in t_he strong—fleld .I|m|t, oNnlYihe system. We are able to enormously simplify the calcula-
the spm-polarlzgd hexagonal lattice an.d. investigated eXgons by adapting an approach we develdpprbviously to
change, correlation, and Landau-level-mixing effécts. the situation of interest here. In Sec. Ill we present numerical
In this paper we discuss magnetic order for two-regqyits for the magnetic ground state of the square and trian-

dimensional electrons in the limit of strong perpendicularg,jar wigner crystal states and discuss differences between
magnetic fields where all electrons are confined to the lowe agnetic-ordering tendencies in zero-field and strong-field

quantized kinetic energy Landau level. In this limit, the statemits. Our results for magnon dispersion relation are pre-

of the electrons depends on the Landau-level filling factolgenteq and discussed in Sec. IV. Section V contains a brief
v rather than the electron density and, except for a NarroWymmary of this work.

interval surroundingy=0.2, the electrons form a Wigner

crystal staté for » smaller than~0.23. [v=N/N, where Il. HARTREE-FOCK AND TIME-DEPENDENT
N is the number of electrons amd,= SB/®,=S/(271?) is HARTREE-FOCK APPROXIMATIONS
the Landau-level degeneracy. He3ds the area of the sys-
tem, B is the magnetic field strength, is the magnetic
length, and®y=hc/e is the magnetic flux quantuiWe The formalism outlined in this section is a straightforward
find, partly on the basis of Hartree-Fock approximationgeneralization of one which we developed originatly de-

A. Hartree-Fock approximation ground state
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scribe phonon modes in the Wigner crystal state, and which

has previously been generalized in other directidfisto

R. COTE AND A. H. MACDONALD

ST (a)=Nye . (),

describe double-layer quantum Hall systems and edge exci-

tations of the Wigner crystal. We outline the main steps in

ST (q)=Nye p_ . (q).

the development of the formalism and refer the reader to RetI'he matrix elements of the Hartree-Fock self-consistent field

9 for further details.
We consider a two-dimensional electron gaBEG) in a
magnetic fieldB=—BZz which is assumed to be strong

in Eq. (3) are given by

enough so that we can make the usual approximation of conV. +(@)=[H(a@) = X(a){p++ (=) +H(a@){p-_(—q)),
sidering only the lowest Landau level. In the Landau gauge,

the Hamiltonian of the 2DEG is thefwe seth =1 through-
out this paper

1
H= 2 éacz,xca,x—i— _2 2 2 V(Q)
ax 2S X, a.pB

g Xi,....
X (Xq|exp(ig-r)[Xs)(Xo|exp(—ig-r)[Xs)

Tt
X Cax,Cp.x,C8XCar, X, (1)
wherea, 8=+ (up), — (down) are spin indices and the low-
est Landau level has the energy

w;  ag®upB
€= —— 5.

=5 2
As usual,w,=eB/m*c is the cyclotron frequency anah*
and g* are the effective mass arygl factor of the electron
appropriate to the two-dimensional electron |aY/€or a fi-
nite system, the allowed values of the quantum nunXbare
separated by 2| 2/Ly . Neglecting the finite thickness of the
two-dimensional electron layer, we takgq)=2me?/q, the

two-dimensional Fourier transform of the Coulomb potential.
Making the usual Hartree-Fock pairing of the second-

guantized operators in the Hamiltonian of E#) and allow-

Vo _(@)=[H(@)—X(@)p--(—a))+H(@D{p:+(—q)),
(6)

Vi _(q)=—X(@){p-+(—a)),

Vo (@==X(@){p+-(—a)),
with the Hartree ) and Fock K) interactions defined by

2

€ 1 2,2
H(Q)Z(T) (a) e”112(1-640),

62 a 2,2
X(q>=(|—> \[frq "o(qAZ), ()

wherel o(x) is the modified Bessel function of the first kind
and the factor (+ 6,0) comes from the neutralizing positive
background.

The ordered state is defined by the set of order parameters
{(pa,p(a))}. In the case of interest here, i.e., for a Wigner
lattice, these parameters are nonzero only wdpers, a re-
ciprocal lattice vector of the crystal. To calculate the
(Pa,p(Q))'s, we define the X 2 single-particle Green'’s func-
tion

ing for the possibility of broken translational symmetry andand its Fourier transforn®,, 5(q,7) by

spin magnetic order in the ground state, we obtain

H=NG 2 €apaa O+ N2 2 Vo p(@pap(@): (3

where we have introduced the operators

Pap(@) =Ny ' 2, exp(—i0,X =101 212)C] xCpx g2
4

which are related to the density and spin operators by th

relations

n(@)=Nye " p, (@) +p_ (9],

1
S =5Nge o, (@)= p- (@],

©)

G p(X,X',7)=—(TC,x(7)C} ,(0)) 8)
Gap(A1)=N;1 > G, 5(X,X",7)
X, X'
1' !
Xex —EIqX(X-i-X) 5X’,X—qu21 (9)
so that
<pa,B(q)>:Gﬁ,a(qu:0_)- (10)

Using the Heisenberg equation of motiond/d7)
X(-+-)=[H—uN,(---)] whereu is the chemical potential
8f the electrons which we measure with respect to the kinetic
énergy of the first Landau level, we obtain the equation of
motion for the single-particle Green'’s functigim an obvi-
ous matrix notation

1 0 1
(iwn+M)|—A(O _1”G(q,wn)—§ exp{zinq’lz}

XV(Q'=a)G(q",@n) =164, (11
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where o, is a fermionic Matsubara frequency, k=Kmax
A=g* u,B/2, andl is the 2x 2 unit matrix.G andV are the (pir(@))= > Ui «Ulk,
2X 2 matrices defined in Eq$8) and (6). k=1
Equation(11) is very general. For example, it can be used
to consider complex spin-texture states such as the Skyrme k=Kmax
crystal studied in Ref. 10, where the' average values of all (ps_(q))= > Ui niUTy,
three components of the average spin are space dependent. k=1
Although we concentrate, in this work, on simple spin- (16)
structure states where E(L1) can be reduced to only one K=Ky
uncoupled equation, we explain here our numerical approach ( ()= E U. U*
for the general case. P+ (G &y ThKENTLke
We represent byj,,9,,03, - - - 0y the wave vectors de-
fining the ordered statén principle, N—< but in the nu- ek
merical calculation, a suitable cutoff is chosen foy. We _ S:"ax .
choose g;=0 and define the vectoiG, z=(G, 4(a1), {p- (@)= e UisniUnsake
g‘:f(?éz gff)(c:;)coumggtﬁo(ghi)j(Orsgie_) Igquv;,élclg’n The value ofk, is obtained from the conditions
simplify Eq. (11) by defining the N-component vectors
G=(G,,,G_,) a_ndGZE(G+__,G__). We fina_lly_geta _ (p1+(0))=v, (17)
set of two coupled integral equations that we write in matrix
form as and
(p-—(0))=v_, (19

. ~ ~++ ~ CN"’++ 1

(iw,+ p)l 5 —-F &, =15/ (12
and

i i Gs- F G| _(O 13

(lwp+ ) s |7Flg |~ il (13

In these equations,f is the 2NX2N unit matrix,

1=(1,0,0,...,0) and @=(0,0,0,...,0) are, respectively,
the N-component unit and null vectors, and is the

2N X 2N matrix defined by

[ A+—(q1q,)
14

_Aéq,q’""Aff(qu,)

A5q,q’+A++(qxq,)
A_.(9,9")

where

Vep(@—a). (15

A ry — 1 /|2
a,ﬁ(qrq )—eX Equq

Note that sinceA, 5(0,q")=[Az.(q",9)]*, F is a Her-
mitian matrix. It follows that Egqs(12) and (13) can be
solved by making the unitary transformatidh=UDUT,
WhereUUT:1~andD is the diagonal matrix containing the
eigenvalues of. Following Ref. 9, we have for the order
parametersi=1,2,...,N)

the filling factors for spin up and down. It is easy to show
from Eq.(16) that, atT=0 K, the following sum rules hold:

%[|<p++(Q)>|2+|<p+7(Q)>|2]=V+. (19

and

%[|<p,+(q)>|2+|<p,,(q)>|z]:V,_ (20)

We note that, except for simple cases such as fully polar-
ized or unpolarized crystals, the filling factars andv_ are
not known from the beginning. The only boundary condi-
tions are the constraints

(p++(0)+(p_(0))=v (D)
and
(p+-(0))=(p_,(0))=0 if A#O0. (22
Also, by definition,
(pr—(@)=(p-+(—m)*. (23)

To find v, andv_, Egs.(12) and(13) must be solved self-
consistently for given values af, and v_ until a conver-
gent solution is obtained. The process has to be repeated for
different sets ofv, and v_ values until the lowest-energy
solution is found. In this way we can determine the lowest-
energy single Slater determinant consistent with any as-
sumed translational and magnetic symmetry. The Hartree-
Fock energy per particle of a particular ground-state
configuration(with respect to the kinetic energy of the low-
est Landau levelis
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vo—v,| 1 V4 (G)=[H(G)=X(G)I{p +(G)). 27
E=A( =+ 52 {TH@ = X(@ o+ ()2 - A o
4 Vq The ground-state energy per particle, in this case, is simply
+(p—(@)PI+H@[{p+ (D) p-(—q))+H.c]
1
= 2X(@)|{p~(a)[} (24 Eii=—A+ 23 [HG) -X(G)][(p++(G)).
In the case of a fully spin-polarized Wigner crystal, only (28
{{p++(G))}#0 (G is a reciprocal lattice vectprand Eq.
(11) simplifies to B. Time-dependent Hartree-Fock approximation collective
excitations
) ~ ) , To determine the collective excitation energies of the or-
(""n+/“_A)G++(Gv‘“n)_§ F(G,G)G, (G, mn) dered state, we define the response functions
= 5(3’0, (25)

Xaﬁy&(qaq’;T):_g<TE)aﬁ(qu)’3y5(_qrio)>! (29)

whereF is now theNx N matrix where p,s=pas—{pap). By making use of the commuta-
tion relatior? of the operatorg,;(q) and of the HF Hamil-
tonian of Eq.(3), we obtain an equation of motion for the
V,;:(G=G’'), (26) response functions that corresponds to the HFA which we
denote byx®. We get(repeated spin indices are summed
with overn

. 1
F(G,G’)zex;{zlexG’l2

. ' _: 12 , H 2 ' " _ "2
[IQH+(6a_ eﬁ)]Xgﬁyé(q:q ;Qn)zéﬁ,ye faxa’l /2<pa§(q_q )>_5a,§elq><q ! /2<pyﬁ(q_q )>_2 Vka(q _Q)e a2
q”

X x%,o( A0 Q) + 2 V(' — @) d 1720 - (q",q7, ), (30)
qH

where(), is a boson frequency. In the case of a fully polarized state, the only nonzero
To calculate the response functions in the time-dependemesponse functions ase, -, ,x_+._, andy, . ., and so

Hartree-Fock approximatiofiTDHFA), and so include the the usual spin-flip and density-density response functions are

correlations that give rise to phonons and magnons, we neagiven by

to sum a set of ladder and bubble diagrarie final equa-

tion for y can be expressesblelyin terms the order param- 24

— ’. —g2 -q'22 ’.
eters of the crystal phase, X" T(a,05Q,)=ge ey (a9 ’Qn)(33)
and
Xaﬁ'yﬁ(qiql;Qn):)}aﬁyﬁ(qrql;ﬂn)—i_E S(DZBKK(q’q”;Qn)
q//
1
XH(A") Xeeys(A",0"; 2n), (31) X*49,0"00)=7x""(9,0";Qp)

where the irreducible response function is given by
_ 9 —qa2,—q'22 0
€ € X++++(q!q 1 n)-

Xapya 00" 20) = X0pya(0.0" 1 20) = 2 Xopee( 00" 20) (34)
q They obey the TDHFA equations of motion
XX(A") X erys(d",0"5 Q). (32

The spin and density response functions are obtained, as
usual, from the analytic continuatio®),— w+ié. The dis-
persion relation of the collective modes are then found by
tracking the poles of the response functions at different val-
ues of the wave vecta in the Brillouin zone. Xx++4+4(9",9;Q,)=Da(q,9") (35

2 {i0484,¢— Ca(0.9") ~Da(A.q"H(A") —X(q") ]}
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and tion below by comparing the dispersion relation of the spin
waves in the TDHFA with that given by a Heisenberg model
with only nearest-neighbor exchange coupling. The ground
> [(iQ,—2A) 84— Ca(9,9")+Dg(a,q")X(q")] state for two-dimensional spin-1/2 particles with nearest-
q’ neighbor interactions on a triangular lattice is expected to
have long range order for both ferromagnetic and antiferro-
% " 40 =D , 36 magnetic interaction¥. However, because of frustration, the
X+--+(d".0" Q) s(0.9"), (36) order is rather subtle for the antiferromagnetic ca3ée
where we have defined triangular lattice isnot a bipartite lattice. Our primary ob-
jective in this subsection is to determine whether the inter-
, o , action is ferromagnetic or antiferromagnetic by comparing
Da(0,0")=—2i sinf(qxq")1%/2], (37 the energy of these two states. For that purpose it is more
useful to consider the case of two-dimensional electrons on a

N i ai(gxg)I22 square lattice since it is bipartite and both antiferromagnetic
Ds(a.9")=(p++(a—0"))e ' (38) and ferromagnetic states have a simple structure. We do so
even though the ground state of the two-dimensional electron
Ca(0,9")=2i(p+.(q—q"))H(G—q")—X(q—q")] solid does not occur in this structure.
Xsin (qxq")l 2/2]' (39 A. Maki-Zotos wave function
It is instructive to begin by generalizing the wave function
Cg(a,9)={(p++(q—9"))X(q—q")cog (g% q)1?/2] for spinless electrons employed by Maki and Zd%ds their

. S , study of the strong-field Wigner crystal. We define
+(p++(q-a"))[2IH(a—a") ~iX(a—q")]

xsin{ (qxq')I2/2]. (40)

(For a Wigner crystalg—k+G, q'—k+G’, etc., where
k is a vector restricted to the first Brillouin zone of the crys- HereR; is thejth lattice vector,
tal.) The problem of calculating the spin-flip and density-
density response functions is then reduced to a matrix-
diagonalization problem. The two response functions 1 —|r=R[?-2i(xR,~yR,)
decouple. The matrix eigenvalues are the collective excita- Yr(r)= Wex 412
tions associated with the two response functions, phonons in
the case ofy"" and magnons in the case pf ~. is the lowest-Landau-level wave functidrfor an electron
whose quantized cyclotron orbit is centered By and
Ill. HARTREE-FOCK APPROXIMATION FOR THE xn=(cos@?2),sin@/2)exp{¢)) is a spinor oriented in the
GROUND STATE n= (sin()cos(p),sin(¥)sin(¢),cos@)) direction. In this wave
) . . function the cyclotron orbits of electrons near different lat-
We first apply the above formalism to examine the naturgjce sites are uncorrelated and the electron spin orientation at
of the magnetic order in the Wigner crystal ground state. Iny given lattice site is arbitrary. In the range ofwhere the
the Hartree-Fock approximation the ground state at Stro”ground state is a Wigner crystal it is an excellent
magnetic fields always has broken translational symntétry. approximatioh®® to ignore the lack of orthogonality be-
This result of the Hartree-Fock approximation is an artifact.yyeen cyclotron orbits centered at different lattice sites.

As we mentioned in the Introduction, the true gggund statq\1aking this approximation, it is easy to derive an expression
has broken translational symmetry only e« 0.23.* Nev-

ertheless, as we discuss further below, the Hartree-Fock ap-
proximation does describghe ground statgeasonably ac-
curately when the ground staitea Wigner crystal. Of course <\If|§‘,i<je2|ri — r]-|*1|\lf>
the Hartree-Fock approximation completely misrepresents E= (W) . (43
the excitation spectrum of the Wigner crystal, since it misses
the phonon and magnon collective modes captured by thg Eq. (43), we have dropped the Zeeman energy, which can
time-dependent Hartree-Fock approximation. easily be added if the electronicfactor is nonzero. The fact
In two dimensions, Coulomb interactions favor a triangu-that the kinetic energy, taken as the zero of energy above, is
lar lattice for the Wigner crystdf: We will find that the en-  quantized is important in determining the favored magnetic

ergy scale associated with magnetic order is much smallesrder. Following Maki and Zotos we find that
than the Coulomb energy scale. We therefore expect the

structure of the Wigner crystal to be the triangular lattice

W= (N1~ def g (i) xn | (41)

. (42

structure dictated by Coulomb interactions. We also expect _ 1 1+n;-n
that the interactions between the spins on the triangular lat- E= 52 IR —Ri|)— 2 Imz(IR; =R |,
tice sites will be predominantly nearest neighbor since the (44)

overlap between wave functions on different sites is quite
small in a strong magnetic field. We check this approxima-where
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e?\ V7 variational wave function such as that used by Zhu and
l(R):(I_) Texp(— R2/812)1,(R?/81?) (45  Loui€® the correlation factors would have to have a logarith-
mic spatial dependence in order to capture the correct long-
and distance ground-state correlation¥Ve cannot completely
rule out on the basis of our calculations the possibility that
3,5(R)=exp(— R2I4I2)I(R). (46) correlations could invalidate our conclusion that the ground

state is ferromagnetic. However, we consider this to be ex-

In this equationl (R) and J(R) are, respectively, the direct tremely unlikely.

and exchange two-body matrix elements of the Coulomb in-

teraction for lowest-Landau-level cyclotron orbits whose B. Self-consistent Hartree-Fock calculations
centers are separated By The explicit expression for the
matrix element in the exchange term, which is sensitive tqg
the relative orientations of the spins on the two sites, is

One possible mechanism in favor of antiferromagnetism
the possibility of spreading the charge associated with a
given lattice site more widely in the case of antiferromag-
netic configurations, which could reduce the electrostatic en-
¢§j(f)l//Rj(f')lI/§i(f')l/fRi(f) ergy. To probe the cgmpetition a little more deep_ly we have
) performed self-consistent Hartree-Fock calculations, based
Ir—r’| on the formalism of the previous section, comparing the en-
(47) ergy of ferromagnetic and antiferromagnetic states on a
For R>1, square lattice. We now discuss the results of these calcula-
tions.

In the Hartree-Fock approximation, the spin order is uni-
directional on a square lattice for both ferromagnetic and
antiferromagnetic interactions. We choose a spin-
) ) . ] quantization axis which is along the direction of the Zeeman
This approximate expression fay;z(R) is accurate to better coypling if one is present and is otherwise arbitrary. This
than 5% even for neighboring sites over the range ofjiows us to set the order parameters which are off-diagonal
Landau-level filling factors where the ground state is ajn the spin indices to zero and simplify our calculation. Let
Wigner crystal. . . a, be the lattice constant of the ferromagnetic square lattice

It.|s evident from Eq.§44) that if the groqnd state is ap- \ith densitynzllag such that 2rnl2= . In the antiferro-
proximated by the Maki-Zotos wave function, a ferromag-magnetic case we assume that the spin density is oppositely

netic state in which all spins are paralle| will be energeticallygiracted on the two sublatticds/hich have lattice constant
favored. The energy increase when the relative orientation Of/fa and have a relative shift af= \/5(1 1
(R} -

. . 515 that
spins on two sites separated Bychanges from parallel to 2:2)2] S0 tha
antiparallel isJ(R). For similar single-Slater-determinant _
variational wave functions at zero magnetic field, the ten- (p__(G))=e"'C¥p, ,(G)) (49

dency would be to favor antiferromagnetic orientations on . . . .
neighboring site§8 except possibly when multisite ring ex- whereG is asublatticereciprocal lattice vectofWe choose

changes become importanMultisite ring exchanges are ©Y coordinate system so that the primitive lattice vectors of
less important for the strong-magnetic-field Wigner crystaltn® sublattice are along the Cartesian axégjuation(11)

because magnetic confinement results in orbitals which arg&" again be simplified to a single equation:

more strongly localized around lattice sitefn the weak-

field case, having opposite spins on neighboring sites reduces .

the kinetic energy density required by the Pauli exclusion(iwn+,u)G++(G,wn)—E F(G,G")G (G ,wy)=6gy0,
principle in the region between the sites. In the strong- G’

magnetic-field limit, the kinetic energy is quantized and is (50)
independent of the spin configuration so this mechanism fawhere

voring antiferromagnetism is not operative. Nevertheless, the

Maki-Zotos wave function is a single Slater determinant and

co_nclusions based upon its use shoul_d be examined _criticf'ally. IE(G,G’) =exp{li GXG'|?
It is known, for example, that correlations can result in spin- 2

singlet fluid ground states, whereas the Hartree-Fock ap-

proximation would always predict ferromagnetic ground X(p++(—G)). (52)
energy, long-wavelength phonon modes to the zero-point

motion gives rise to long-range correlations which, for ex-

ample, make the static structure factor vanish more quickly

(=g%? than it would for a system with short-range interac- E**:;EG: {H(G)[1+cosG-a)]=X(G)}(p++(G))|*.

tions. At strong magnetic field, even stronger correlations, (52
which make the static structure factor vanishcgs result

from the contribution to the zero-point motion of the collec- We have solved these equations self-consistently. Because
tive cyclotron mode of all electrongln a Jastrow-Slater of the variational nature of the Hartree-Fock approximation,

JMZ(|RJ—Ri|)=e2fdrfdr’

eZ
Inz(R)~ exp(— R2/412). (48)

[(1+e ' HH(G)—X(G)]
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TABLE |. Energy of the square and triangular ferromagnetic  TABLE Il. Energy of the square and triangular ferromagnetic

states(SLF, TLF) and of the antiferromagnetic state on the squarestates(SLF,TLF) and of the antiferromagnetic state on the square

lattice (SLA) in the Hartree-Fock approximation in units ef/!. lattice (SLA) in the Maki-Zotos approximation in units ef/|. The

The relative energy difference between the ferromagnetic and antrelative energy difference between the ferromagnetic and antiferro-

ferromagnetic states on the square lattice is giver By, while magnetic states on the square lattice is givenAll;, while the

the relative difference in energy between the ferromagnetic state orelative difference in energy between the ferromagnetic state on the

the triangular and square lattices is given ¥ couomp- triangular and square lattices is given B ouiomb-

AE spin A ECoqumb AE spin A ECoqumb
v Esir Esia Err (%) (%) v Esir Esia Err (%) (%)
1/3  -0.3857672 -0.3823134 -0.3884928 0.90 0.70 1/3 -0.3858614 -0.3814086 -0.3885208  1.15 0.68
1/4  -0.3484399 -0.3478963 -0.3511452 0.16 0.77 1/4 -0.3482640 -0.3474804 -0.3511413  0.23 0.82

1/5 -0.3196321 -0.3195124 -0.3219969 0.037 0.73 1/5 -0.3194893 -0.3193454 -0.3219900 0.045 0.78
1/6  -0.2964916 -0.2964471 -0.2985717 0.015 0.70 1/6 -0.2964083 -0.2963812 -0.2985680 0.0091 0.72
1/7  -0.2775104 -0.2774874 -0.2793787 0.0083 0.67 1/7 -0.2774646 -0.2774594 -0.2793770 0.0019 0.68
1/8 -0.2616473 -0.2616346 -0.2633555 0.0049 0.65 1/8 -0.2616223 -0.2616213 -0.2633548 0.00038 0.66
1/10 -0.2365415 -0.2365379 -0.2380218 0.0015 0.62 1/10 -0.2365341 -0.2365340 -0.2380216 0.000016 0.63

these solutions provide us with the lowest-energy singleor, equivalently, in the ferromagnetic case
Slater determinant consistent with the assummed magnetic
and translational broken symmetry. In particular, the solu-
tions to these equations will always give a lower energy than (p(G))yz= pe~GA%4 (55)
the energy for the corresponding Maki-Zotos wave function.
The optimization process implicit in obtaining a self- (For the SLA casey— v/2 and theG’s are replaced by the
consistent solution of the Hartree-Fock equations results isublattice reciprocal lattice vector$Ve use the order param-
cyclotron orbits on each lattice site which are distorted byeters defined by Eq55) in Eq. (28) to compute the Maki-
their average environments, including their magnetic enviZotos ground-state energies tabulated in Table 1l. We remark
ronments, in a way which minimizes the total interactionthat this procedure is exactly equivalent to computing Eq.
energy. It is still true, however, that the cyclotron orbits on(44) (when the interaction with a positive homogeneous
different sites are not correlated with each other. The errobackground of charges is added to this last equatiNite
introduced as a consequence can be estimated by usingatso that these results include only the Coulomb energy.
harmonic approximation for the strong-field Wigner crystal, These tables report also the results of calculations performed
which is reasonably accurate from an energetic point of viewor filling factors where the ground staterist believed to be
throughout the regime where the ground state is an electroa Wigner crystal. These largefesults are intended to illus-
crystal. In the harmonic approximation the many-bodytrate trends in the self-consistent Hartree-Fock approxima-
Schradinger equation can be solved exactly and the groundtion solutions and not to be physically realistidn order to
state energy is the sum of the classical Madelung energy armabtain a stable Wigner crystal state in the Hartree-Fock ap-
the quantum zero-point energy, i.e., proximation and to get a convergent result for its ground-
state energy, we need to consider a large number of order
parameters or, equivalently, of reciprocal lattice vectors
Enarmonic= — 0.78213Y2+ 0.24101°7, (53)  (RLV's). The number of RLV’s to be considered increases as
the filling factor gets small and at some point, the calculation
for the hexagonal lattice. The Hartree-Fock approximatiomecomes numerically prohibitive. Moreover, the number of
describes the Madelung term exactly the limit »—0, the  RLv's that has to be taken into account is bigger for the
HFA energy coincides with the classical energy of a pointgntiferromagnetic lattice than in the ferromagnetic lattice
lattice) and overestimaté3the zero-point energy by approxi- since the antiferromagnetic lattice with filling factor is
mately 25%(at »=0.2). made of two sublattices with filling factor/2. Typically,
The results of our calculations are summarized in Tables |yhile 100 RLV's is sufficient to obtain the ground-state en-
and II. In Table I, we list the ground-state energy per electrorprgy for filling factors aroundv=1/3 in the ferromagnetic
in the HFA for the square lattice antiferromagnet®lA)  case, we need to consider about 800 RLV's to obtain the
and ferromagneti¢SLF) states as well as for the triangular ground-state energy to the accuracy reported in Taloée
lattice ferl’omagneti(ﬁTLF) state. Table Il contains a similar curacy which is necessary for Comparison with the Maki-

calculation using a simplified form of the Maki and Zotos zotos energy; for filling factor »=1/10 in the antiferromag-
wave function where we have neglected the overlapping benetic |attice.

tween two wave functions centered on different sites so that e see that for the larger filling factors, the difference in

the single-electron density can be approximated by energy between Hartree-Fock square lattice ferromagnetic
and antiferromagnetic stated Eg,i;=(Eg r— Esia)/EsiF,
agrees quite closely with what would be predicted by the

D e~ (—R)%22 (54) Maki-Zotos wave functiofEg. (55)]. At smaller filling fac-

2?4 ’ tors, however, the Hartree-Fock energy difference between

(n()=2 |y (n]*=
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TABLE lll. Value of the exchange integral, in units ef/l, on
the square lattice obtained from various approximatiahgy is
from the definition of the exchange integral given in EG0),
Jura is Obtained from the energy difference between the ferromag-
netic and antiferromagnetic state&q. (59)], and J tpyes is 0Ob-
tained by fitting the TDHFA spin-wave dispersion relation with the
spin-wave dispersion relation of the Heisenberg mdgeé texxt

v Imz Jhra JToHFA
1/3 0.22x 1072 0.17 X 1072 0.13x 1072
1/4 0.39x 1073 0.27 x 1073 0.24x 1073
1/5 0.72x 1074 0.60x 107* 0.43x 1074
1/6 0.14x 104 0.22x 107*

17 0.26x 107° 0.11x 10~*

1/8 0.50% 107 0.63x 107°

1/10 0.19x 1077 0.18x 107°

these two spin states is much bigger than what would be
predicted by the Maki-Zotos wave function. The energy re-
duction due to the added variational freedom compared to
the Maki-Zotos wave function is larger for the ferromagnetic
state than for the antiferromagnetic state and this leads to an
increased energy difference between the two stffe® also
Table 11l where, as discussed belody,, is proportional to
(EgLr— EgLa) evaluated with the Maki-Zotos wave function
and Jyga is proportional to Eg —Eg 4) evaluated in the
HFA.] In both the Makis-Zotos and HF approximations, the e ;
ferromagnetic state has the lowest energy. In Fig. 1, we plot 0-‘0 2 014\‘ 06 08 10 12 4

the differencein density: (n(r))yea—(n(r))uz for the SLF (b)

and SLA at filling factory=1/8. It is clear from this figure _ _ .

that the HFA minimizes the Coulomb energy in both the SLF FIG. 1. Dn‘feren_ce n densr[.le.s between the Hart.ree":.OCk and
and SLA cases by removing charges along the direction oz‘a';"z"‘os approximations at filling facm.’: 1/8 and in units of

the nearest-neighbor sites and putting them along the dire /30 for_ (@ the ferromagnetlc square lattice _aﬁnj the annfer_ro- .
tion of the next-nearest-neighbor sites. This is just what Wemagnetlc square lattice. For the ferromagnetic state, the lattice sites

t at h Il filling fact h lap bet are indicated by gray circles. For the antiferromagnetic state, sites
expect at such a small Tilling factor, where overlap between, , .o ¢ pjattice are indicated by black circles and sites on the

wave functions on (:!|ﬁerent' sites Is very small and theother sublattice are indicated by empty squares. Note that the ori-
ground-state energy is dominated by tfairectd Coulomb  iation of the lattice differs ita) and (b).
interaction. According to our calculations more charge redis-
tribution occurs in the ferromagnetic case. For the triangulathe ferromagnetic ground state, we showed that the density
lattice, a similar calculation gives a much smaller differenceresponse functiory™", or equivalently the longitudinal spin
in densities, reflecting a loss in the variational freedom dugesponse functiory??= x""/4, is uncoupled from the trans-
to the higher coordination number of the triangular lattice. verse spin response functigri ~. The poles of the longitu-
We remark that similar self-consistent calculations for adinal spin response function are nothing but the phonons of
single-band Hubbard model at half filling would find the the Wigner crystal for which we have already computed the
antiferromagnetic state to be lower in energy, correctly redispersion relation in Ref. 9. The transverse spin excitations
flecting the superexchange coupling in that systive also  are the magnon collective modes of the ferromagnetic
see that, as anticipated above, the difference between tiWigner crystal. Figs. 2 and 3 show the TDHFA dispersion
square lattice ferromagnetic state and the triangular latticeelations for the SF and TF lattices, respectively, at different
ferromagnetic state energy,AEcouomi= (ETLr—Esip)/  values of the filling factor[When the electronig factor is
E+r.r. is much larger than the difference between ferromagnonzero all magnon collective modes energies are increased
netic and antiferromagnetic states on the same lattice. Thigy the Zeeman gap* ugB. In the simple collinear states
energy difference is almost constant over the range of filling SLF, SLA, and TLF that we consider here, a small Zeeman
factors considered here, decreasing slowlyvadecreases. term has no effect on the calculation of the order param-
For v—0, AEcouemp@Pproaches its Madelung energy value, eters] We remark that, because of the numerical approach
0.53%12 used in this work, it is not possible to obtain the dispersion
relations at very small filling factors without having to con-
sider a prohibitively large number of reciprocal lattice vec-
tors. For the square lattice, we were not able to obtain accu-
As we described above, the ground-state order parameterate results forvy<<1/5 while for the triangular lattice
can be used to calculate the spin-wave collective modes. ln=1/7 was the lower limit.

IV. COLLECTIVE MODE CALCULATIONS
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TABLE IV. Value of the exchange integral, in units ef/l, on
the triangular lattice obtained from the various approximations de-
1+ TDHRA scribed in Table Il1.
0.012 — ——  Heisenberg
. ++++*++ r v vz JTpHFA
. “ 13 0.99x 1073 0.74x 1073
< 0.008 - . ov=3 r X 1/4 0.14x 1073 0.12x 1073
T A . 1/5 0.20x 1074 0.17x 10°*
g 1/6 0.29% 107° 0.25% 10°°
3 il 17 0.44x 1076 0.40x 107©
k 1/8 0.67x 1077
0.004 — 1/10 0.16x 1078
v=1/4
(The summation is over the lattices siteand thev, nearest
0.000 . I ] L — ad neighbors of the lattice. Note that this convention for the
0.00 0.40 0.80 1.20 1.60 exchange constant results in double counting each neighbor
k(2 fa) pair) In that case,

FIG. 2. Dispersion relation of the spin waves of the ferromag-

netic square lattice obtained from the TDHFA and from the Heisen- (k) =2Jvos(1- 7, (57
berg model at different filling factors. The dispersion relation isWith
plotted along the edges of the irreducible Brillouin zggkown in
inse) of the square lattice with lattice spacirg In units of
27/a, I'=(0,0), J=(1/2,1/2), andX=(1/2,0).
1 R
ye=—2 e, (58

It is interesting to compare these magnon dispersion rela- Yo o

tions with the dispersion relation of the spin waves of the
Heisenberg model where the spins are localized on the lattic®
sites and the Hamiltonian is given by

nds=1/2.

The solid lines in Figs. 2 and 3 show the dispersion rela-
tion obtained from a nearest-neighbor interaction Heisenberg
model with the interaction strength chosen to reproduce the
TDHFA numerical results. The fit is quite good and becomes
almost perfect at smaller filling factoréThe discrepancy at
v=1/3 can be improved by fitting with nonzero next-nearest-
neighbor coupling. The exchange integral +pea Obtained
in this way from the TDHFA dispersion relation, for different
filling factors, is listed in Table ll(square latticeand Table
IV (triangular lattice. These tables also show values of the
exchange integral calculated in two other ways. From Table
I, we see that the ground-state energy is minimal for the
polarized square lattice. We can estimate the strength of the
exchange coupling from this energy difference as follows.
We assume that, as far as the magnetic degrees of freedom
. are concerned, the Hartree-Fock solution yields an Ising ap-
proximation to the antiferromagnetic ground state, i.e., it
does not capture the quantum fluctuations which would be
present in a true antiferromagnetic ground state. It is then
easy to se¥ that, for the square lattice,

H=—J% S-S:s. (56)

1.2x10°— } n

X —— Heisenberg

TDHFA

v=1/4
8.0x10™ —

ol (e2)

4.0x10™ —

v=1/5

e
=l
<

L=

ESLA_ ESLF

HFA= > (59

0.80

k/(2m /a) This expression assumes that non-nearest-neighbor exchange
FIG. 3. Dispersion relation of the spin waves of the l‘erromag-COl"p,Iing is negligi_ble(Note th‘_"lt a similar Calcwation.is not
netic triangular lattice obtained from the TDHFA and from the POSSible for the triangular lattice because of frustrafitiie
Heisenberg model at different filling factors. The dispersion relation@n @lso compute the exchange integral directly from the
is plotted along the edges of the irreducible Brillouin zéseown ~ Maki-Zotos wave function expression, E@7). This gives
in the inset of the triangular lattice with lattice spaciray In units ~ Ed. (45) or, using 2rnl?=v with n=1/aa3 [a=1 (SP or
of 2m/a, T'=(0,0), J=(1/V/3,1/3), andX=(1/13,0). a=+/312(TFH)],

1.20 1.60
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@2\ [ 4\ 12 , a tron orbits will overlap more strongly on average and the
Imz=| 7]\ 7 e 3, 7 (60)  relative spin orientation of nearby electrons will assume a

larger importance.
Note that if the Maki-Zotos energies are used in E5p)
instead of the HFA energied,,; is recovered exactly as long
as non-nearest-neighbor interactions are negligible. V. SUMMARY

For the TLF, the exchange integral obtained from the |, e strong-magnetic-field limit, we have argued that the
TDHFA is only slightly smaller thanly;. For the square |oyest-energy spin state of the Wigner crystal is the ferro-
lattice, the exchange integral obtained from the TDHFA ismagnetic state. Our conclusion is based in part on a compari-
smaller than bothly; and the HFA value over the range of son of ferromagnetic and antiferromagnetic state energies of
v where we are able to complete calculations. At smalleisquare lattice Wigner crystal states calculated in the Hartree-
filling factors, since the difference between the two spinFock approximation and in part on the observation that the
states decreases faster with the Maki-Zotos wave functiogsuperexchange mechanism, which tends to favor antiferro-
than with the HFA, the HF value aFis much larger than the magnetism, is absent in the strong-magnetic-field limit. The
Maki-Zotos value. We expect the TDHFA result to remain spin-wave dispersion relations, which we compute in the
close to the HFA result in this regime. Unfortunately, we TDHFA, show that the ferromagnetic lattice is stable at fill-
cannot check this assumption numerically since we canndg factors where crystallization occurs. In this limit, the in-
compute the TDHFA value af at smaller filling factor(the ~ teractions between spins on the lattice are dominated by
matrix size becomes prohibitively largédowever, since the nearest-neighbor exchange coupling. Our results appear to
TDHFA is obtained from a functional differentiation of the Show that small distortions of the wave functions for elec-
HFA, our assumption seems reasonable. In any case, tHENS on one lattice site, due to their interactions with elec-
present result shows clearly that, in the Wigner crystal, thdrons on nearby lattice sites, are responsible for a large rela-
interaction between spins, at small filling factor, is mainly tive increase in the small exchange couplings at small filling
from nearest neighbors. factors. A comparison with the liquid state at filling factors

In the small-wave-vector limit, the Heisenberg dispersionv=1/3 andv=1/5 shows that the spin stiffness of the ferro-
relation on the triangular lattice is given by(k)=3  magnetic liquid states which occur at these fillings is sub-
J(kag)2=D(kI)2 whereD = 27+/3J/v in units ofe?/l. With stantially larger than that of corresponding crystal states. In

J given by Jrpues as calculated above, we find that closing we remark that the recent sucessful applic&tiof
D=0.024 atv=1/3 andD=9.3 X 103 at 1}':1/5_ These Nuclear-magnetic-resonance methods to two-dimensional
&lectron systems, suggests that the magnetic properties of

whereD=4m12p /v wherepy is the spin stifiness. For the two-dimensional electron systems in the regime where the

liquid state it is possible to express the spin stiffness in term¥Vigner crystal state occurs will soon be open to experimen-
of the pair correlation functidd?and this has been evalu- tal investigation, so that our conclusions can be tested. These

ated using a hypernetted-chain approximation for the ”quid_experiments should open up a host of interesting new ques-

state pair correlation function in Ref. 25. For the liquid statel'onS: related to disorder and thermal fluctuations.

we find thatD=0.035@?/l) at »v=1/3 andD=0.015@?/1)

at v=1/5. We see that the spin stiffness is larger for the
liguid state and increasingly so as the filling factor decreases. This research was supported in part by NSF Grant No.
This result is consistent with the view of the strongly corre-DMR-9416906, by the Natural Sciences and Engineering
lated electron states as quantum melted crystals of electrom&esearch Council of CanadbSERQ, and the Fonds pour
whose size is smeared on a magnetic length scale by rapld formation de chercheurs et I'aidela recherchg FCAR)
cyclotron motion. When long-range order is lost, the cyclo-from the Government of Qlbec.

values should be compared with those of the liquid stat
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