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NMR relaxation rates for the spin- Heisenberg chain
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The spin-lattice relaxation rate 1/Tj and the spin-echo decay rate 1/T2& for the spin-2 antiferromagnetic
Heisenberg chain are calculated using quantum Monte Carlo and maximum-entropy analytic continuation. The
results are compared with recent analytical calculations by Sachdev. If the nuclear hyperfine form factor Aq is
strongly peaked around q = m. , the predicted low-temperature behavior [I/T, —ln' (1/T), I/T2G
-In'~ (I/T)/QT] extends up to temperatures as high as T/J=O 5 If A. .has significant weight for q=0 there
are large contributions from diffusive long-wavelength processes not taken into account in the theory, and very
low temperatures are needed in order to observe the asymptotic T—+0 forms.

The one-dimensional spin--, antiferromagnetic Heisenberg
Hamiltonian,

1 1 + + IA, I'S(q au~0)
Tg N q

(2)

H=Jg S; S;

is relevant as a starting point for understanding the magnetic
properties of many quasi-one-dimensional materials. Ex-
amples include CuCl 2N(C&H&), KCuF3, and several tet-
racyanoquinodimethane (TCNQ) charge-transfer salts. '

NMR and NQR are commonly used techniques for studying
the spin dynamics of materials such as those listed above.
The low-frequency dynamic susceptibility is accessible
through the spin-lattice relaxation rate 1/T, and the spin-
echo decay rate 1/T2G. Theoretical results for the tempera-
ture dependence of both these rates were recently obtained
by Sachdev, using a form for the dynamic susceptibility
derived by Schulz using the bosonization method. Neglect-
ing logarithmic corrections, 1/T, is predicted to be constant
at low temperature, and 1//T2G is predicted to diverge as
T . With logarithmic corrections taken into account both
rates acquire a factor 1n'~ (1/T). These results are expected
to be valid only for temperatures T(&J, and it is important to
verify their validity as well as to obtain results also at higher
temperatures. Here results are presented for 1/T, and 1/T2G
computed using quantum Monte Carlo (QMC) simulations of
chains of up to 1024 spins. 1/T2G is related to static suscep-
tibilities directly computable in the simulations. The dynamic
susceptibility required for extracting 1/Ti is calculated in
imaginary time and continued to real frequency using the
maximum-entropy method. '

The results for the temperature dependence of both 1/Ti
and I/T2G at low temperatures are in good agreement with
Sachdev's predictions. At higher temperatures diffusive
modes not taken into account in the theory cause significant
deviations. If the nuclear hyperfine form factor has large
weight at long wavelengths very low temperatures are
needed for the asymptotic forms to apply, and they may then
be difficult to observe experimentally. The results presented
here should be useful for comparisons with experiments also
at higher temperatures.

The NMR spin-lattice relaxation rate is given by

where A is the hyperfine form factor, and n denotes the two
axes perpendicular to the external field direction. S(q, cu) is
the dynamic structure factor, which is related to the imagi-
nary part of the dynamic spin susceptibility according to
S(q, ru) =y"(q, co)/(1 —e ~ ), where P= 1/k&T. Here an
isotropic form factor A =Aq will be assumed. Defining

1
s„(~)= gg IA, I's(q, ~),N q

CA(r) = X A(r;)A(r, )(s;(r)S;(o)&, (4)

where S', (r) =e' S', e ' . W.ith Cz(r) calculated numeri-
cally, S„(ru) can be obtained by inverting the relation

f oo

Cg ( r) = — d AS„(ru) e
rr J

(5)

using the maximum-entropy technique. ' This method is de-
scribed in detail in Ref. 8, and was recently applied in a
calculation of the spin-lattice relaxation rate of the two-
dimensional Heisenberg model.

The Gaussian component of the spin-echo decay rate is
related to the the nuclear spin-spin interactions mediated by
the electrons. Under conditions discussed by Pennington and
Slichter

T2G
= -g J,(0, x)

2x40

1/2

where J,(xi,x2) is the z component of the induced interac-
tion between nuclei at x& and x2..

the spin-lattice relaxation rate is then obtained as
1/T, =2S&(co~0). For the numerical calculations carried
out here it is more convenient to work directly with the hy-
perfine coupling A(r) in coordinate space. Define
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1
J,(xt,x2) = ——g A(xt r;—)A(x2 rj—)y(i j—) .(7)

E,J

The static susceptibility y(i —j) is given by the Kubo for-
mula

0.5

0.4

-03- ~3

/J=0. 5

f P
g(i —j)= dr(S', (r)S'(0)).l J (8) 02 -.2

The hyperfine interaction A(r) is normally very short
ranged. Here a situation is considered where the nuclei stud-
ied reside at the sites of the electronic spins modeled by the
Hamiltonian (1).The hyperfine coupling is assumed to have
a direct contact term of strength A(0), and a transferred
nearest-neighbor term of strength A(1). Results are pre-
sented for several values of the ratio R=A(1)/A(0).

A stable inversion of the relation (5) requires that CA(r)
is known to very high accuracy. Here a quantum Monte
Carlo method based on stochastic series expansion' (a gen-
eralization of Handscomb's method' ) is used. This tech-
nique is free from systematical errors of the "Trotter break-
up" used in standard methods. The imaginary time
correlation functions needed have been calculated to within
relative statistical errors of only 10 or lower for tempera-
tures down to T=J/8. This high accuracy is required for
obtaining a reliable estimate of Sz(co~0). The static sus-
ceptibilities (8) are computed directly in the QMC simula-
tion, and hence the calculation of IITzG is not hampered by
potential problems associated with analytic continuation. Ac-
curate results for 1/TzG have been obtained at temperatures
as low as T=J/32 for systems of up to 1024 sites, which is
large enough for finite-size effects to be completely negli-
gible.

In order to test the accuracy of a calculation of 1/T, by
analytic continuation of QMC data, complete diagonaliza-
tions of 16-site chains were also carried out. Comparisons of
S(co)=(I/N)Z~S(q, co) obtained in these calculations with
numerically continued QMC data are shown in Fig. 1. The
maximum-entropy method requires a "default model" which
defines the zero of entropy. ' In all calculations presented
here a Qat default model was used. Exact diagonalization
gives S(co) as a finite number of 8 functions and their cor-
responding weights. Here the results are plotted as histo-
grams in order to facilitate comparison with the maximum-
entropy result. The jagged structure of the exact
diagonalization result, which is due to the small size of the
system, cannot be reproduced by the maximum-entropy
method. The results do, however, represent reasonable fre-
quency averages. Note that even the high-frequency behavior
is obtained quite accurately. Clearly a 16-site system is not
large enough for extracting the low-frequency behavior at
low temperatures. The 1/Tt results presented below are for
systems of 256 spins, and the accuracy of the imaginary time
data used for the analytic continuation is even higher than
the data used for the 16-site results shown in Fig. 1. Com-
parisons with results obtained for 128 spins indicate that
there are no significant finite-size effects at the temperatures
considered.

Both fiuctuations of the uniform (q=0) and staggered
(q= m) magnetization contribute to the NMR rates of half-
integer spin chains. At low temperatures the staggered con-
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FIG. 1. QMC and exact diagonaliz ation results for
S(co)=(1IN)X~S(q, co) of a 16-site chain. The exact results are
plotted as histograms, and the curves are numerically continued
QMC imaginary time correlation functions.

tribution dominates. Neglecting the uniform fluctuations,
Sachdev obtained the asymptotic low-temperature forms (in
units where A, =kz = 1)

1 m'D—=A
T1 c (9a)

1 2 ID
2cT ' (9b)

where I=8.4425, and c is the spinon velocity, which for spin
is c= 7r/2 Dis the pref. actor of the asymptotic equal-time

spin-correlation function, which is not known accurately. '
The marginally irrelevant operator present for the critical
spin chains has not been taken into account in the derivation
of the above forms. This is expected to lead to a multiplica-
tive correction ln (A/T) for both 1IT, and 1IT2G. Hence,
the ratio T2G /(QTT, ) should be a constant, even with loga-
rithmic corrections included.

If IIT2G-In' (AIT)I +T as predicted by Sachdev,
T(1/T2G) should be a linear function of ln(JIT). In Fig. 2,
T(A T2G) is graphed versus In(JIT) for several values of
the hyperfine coupling ratio R=A(1)/A(0). In cases where
the corresponding A~ is peaked around q = m (R ~0) a linear
behavior is seen in a wide temperature regime. The points for
R = —0.25 and R = —0.5 nearly coincide at low T, indicating
that the q= m contributions almost completely dominate the
behavior in both cases. A line At to the R = —0.5 points gives
A=0.92J and the amplitude D=0.080 in (9b). For R)0
contributions from q=0 rapidly become important at high
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temperatures, and for large values of R the asymptotic be-
havior can only be observed at very low temperatures.

Results for 1/Tt divided by A„are shown in Fig. 3. The
expected weak (logarithmic) increase as T decreases can be
seen below T/J=0. 5 if R is large and negative, so that
q= 7r processes dominate S„(co~0) even at relatively high
temperatures. For R)0, 1/T, decreases with decreasing T
down to quite low temperatures —for R = 0.25 this behavior
extends down to the lowest temperature studied. The en-
hancement of 1/T, at high T is caused by the diffusive
q=O processes not taken into account in the forms (9). In
order to more clearly determine the importance of these
modes one can study the ratio

Sq( /2(cu~O) Zq( /2S(q, ro~O)
S(co~O) XqS(q, ru~O) (10)

which is graphed versus the temperature in Fig. 4 (these
calculations were carried out on systems of 128 spins). At
T=J the q(qr/2 contribution is approximately 50%, and

FIG. 2. Results for the spin-echo decay rate, graphed as

T(A T2G) vs ln(J/T) for different hyperfine ratios R=A(1)/
A (0).

FIG. 4. The long-wavelength contribution to S(ru ~0)
=X S(q, co~0) vs temperature.

decreases rapidly at lower temperatures. These results con-
6rm Sachdev's conclusion that the q=0 contribution to
1/T, is negligible in the limit T~O.

Returning now to the results shown in Fig. 3, there are not
enough low-temperature data to extract the asymptotic tem-
perature dependence of I/Tt . The results are, however, con-
sistent with a divergence of the predicted form ln / (A/T)
with the same A = 0.92J as was found above for 1/T2o. The
amplitude needed in Eq. (9b) is then D=0.14, which is sig-
nificantly larger than the amplitude extracted from 1/T2G
above. Hence, the ratio T2G/(QTT, ) is different from Sach-
dev's prediction. The ratio is graphed versus temperature in
Fig. 5. For R(0 it is indeed almost constant below
T/J=0. 5, whereas for R~O there is a significant tempera-
ture dependence down to the lowest temperatures consid-
ered. For positive R there is a sharp maximum in

T2G/(QTTt), arising from the minimum in 1/T2G seen in

Fig. 2. The R = —0.5 result for T2G/(QTT, ) at low tempera-
tures is approximately 3.0—3.1, which is almost a factor 2
larger than what is obtained from Eqs. (9).

In summary, the NMR rates 1/Tt and 1/T2G have been
calculated for the spin-2 Heisenberg model, using quantum
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FIG. 3. Spin-lattice relaxation rates vs temperature for different
hyperfine ratios R=A(1)/A(0). The solid curve is of the form

In(A/T), with A=0.92J.
FIG. 5. The ratio T2G/+TT, vs T for different hyperfine ratios

R =A (1)/A (0).
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Monte Carlo and maximum-entropy analytic continuation.
The temperature dependence at low temperature is in good
agreement with Sachdev's recent theoretical results, which
include only the contributions from staggered magnetization
fluctuations. At high temperature damped q=0 modes are
important, and can dominate the NMR rates if the hyperfine
form factor has large weight at long wavelengths. In such
cases very low temperatures are needed to observe the
asymptotic forms. In many real systems effects of interchain
couplings may become important before the asymptotic re-
gime is reached, and the low-temperature forms may there-
fore not be easily observed. The results here should then be
useful for determining the relevance of a description by the
one-dimensional Heisenberg model based upon measure-
ments at higher temperatures. It can be noted that early NMR

experiments on (NMP)(TCNQ) indicate a behavior of 1/Tt
similar to the result shown in Fig. 3 for a small positive
hyperfine ratio A(1)/A(0), with no indication of a low-
temperature increase down to T=0.1J.

It will be interesting to apply the techniques used here to
calculate the NMR rates of other one-dimensional systems.
Work on coupled spin chains is in progress. Itinerant elec-
trons described by one-dimensional Hubbard-type models,
including electron-phonon interactions, can also be studied.
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