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In this paper we present a general picture of the cyclic change in resonant structure seen in conductance
across quantum Hall transitions in quantum antidots. The cycle begins with resonant dips below the ne /h

plateau, which evolve into resonant peaks above it. A sinusoidal oscillation, of shorter period in magnetic field,
then appears, which evolves into resonant dips below the (n+ 1)e /h plateau. The cycle repeats for successive
transitions. We provide an explanation for this behavior in terms of the edge-state model and show by nurneri-

cal calculation that this picture accounts in detail for the line shapes and dependencies observed experimen-

tally.

The existence of the quantum Hall effect in highly dis-
ordered silicon metal-oxide-semiconductor field-effect tran-

sistors indicated a fundamental simplicity in the nature of
electronic transport in these complex systems. The underly-

ing reason for this quantization was shown to be the division
of the wave function at the Fermi energy (EF) into spatially
separated edge states that follow equipotentials in the two-
dimensional electron gas (2DEG). ' In a large device the
transition regions between quantum Hall (QH) plateaus are
smooth; however, in smaller devices, at milli-Kelvin tem-
peratures, a complex pattern of resonant structure is resolved
that may be associated with communication across the 2DEG
via localized edge states that form around closed equipoten-
tials. At the high-magnetic-field end of a QH transition this
structure typically consists of conductance peaks that may be
associated with resonant transmission through states trapped
in cavities: quantum dots (QD's). At the low-field end, con-
ductance dips are typically observed; these may be associ-
ated with resonant reAection via localized states magnetically
bound to peaks: quantum antidots (QAD's). ' However, at a
general point in a QH transition the presence of more than
one Landau level (LL), and thus the possibility for inter-LL
scattering, can produce resonant reflection from QD's and
resonant transmission through QAD's. Variations in both the
scattering strengths, and the occupation of bound states of
different LL's around single QAD's or QD's leads, in gen-
eral, to the conductance across a QH transition being a com-
plex pattern of peaks and dips with asymmetric and non-
Lorentzian line shapes. In this paper we make a detailed
experimental and theoretical investigation of these conduc-
tance patterns in a single QAD, and propose a cyclic pattern
in this structure across any QH transition. Our aim is to
provide a comprehensive understanding of such transitions,
which may be used as a basis for distinguishing between the
different contemporary theories of edge states. '

The paper is organized as follows: we first present our
experimental QAD with the corresponding edge-state scatter-

ing picture. We then describe the changes in scattering, and
the resulting effect on the resonant conductance profiles,
across any QH transition with reference to the v=2 to
v=4 transition (v is the LL filling factor), and present de-
tailed experimental conductance data for this transition. Fi-
nally, we make a quantitative comparison between our data
and a numerical evaluation of the expected scattering dia-
gram.

Our experimental QAD is defined using an independently
contacted gate placed in the center of a s lit gate (SG) to
form two parallel ballistic constrictions. ' The QAD litho-
graphic diameter is 0.2 p, m, the SG lengths are 0.3 p, m, and
the separation between the side gates and the QAD is 0.3
p, m. The device was fabricated on a GaAs/Al Gai, As het-
erostructure with the 2DEG 100 nm below the surface, car-
rier density 3.3X10is m

—z, and mobility 60 m V s af-
ter brief illumination. The device was measured at
temperatures below 100 rnK using low-voltage and low-
frequency ac techniques in a magnetic field such that the
minimum filling factor v=7 in the bulk. The gate voltages
were set so that the SG widths were as closely matched as
possible. Three important factors make this the ideal regime
in which to study the general features of a QH transition: (1)
Both inter- and intra-LL scattering are present. (2) EF in the
bulk is approximately independent of magnetic field. (3) The
absence of spin-flip scattering allows us to treat the QAD
conductance as the sum of those for spin up and spin down,
G=G$+GJ.

Within linear response theory at low temperature, the
wave function at EF determines the conductance of a quan-
tum system. In a magnetic field this wave function may be
constructed as a superposition of edge states. The conduc-
tance of a network of edge states may be calculated within
the Landauer-Buttiker formalism with unitary scattering
probabilities between any pair of edge states that are suffi-
ciently close. In a transition where the (n+ 1)th LL
changes from being perfectly reflected to perfectly transmit-
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FIG. 1. A schematic diagram of the QAD. Edge states are rep-
resented as solid lines, the scattering events relevant to this paper
are shown as dashed lines.

ted through a QAD, we might expect scattering in the nth
and (n+1)th LL's to dominate the conductance, since con-
tributions from other LL's are exponentially smaller. This
assumption allows us to discuss a general QH transition in
terms of the simplest case, which is the transition involving
the n = 0 and n = 1 LL's. At low magnetic fields approximate
spin degeneracy causes this transition to consist of two sepa-
rate transitions that occur simultaneously, i.e., the v=2 to
v=4 QH transition. Figure 1 gives the edge-state scattering
mechanism for this transition. It does not include spin-Hip
scattering. Events a and c are intraedge-state scattering for
the n=p and n=1 LL's, respectively; b is interedge-state
scattering between the n = 0 and n = 1 LL's. They occur with
probabilities p, , pb, and p, . Interedge-state scattering
probabilities from higher LL's are much smaller since these
states lie further from the QAD.

In our device, a QH transition v to v+ 2 may be induced
by either a reduction in magnetic field B or a reduction in the
magnitude of the center gate voltage Vg. To understand the
B and Vg dependence of the scattering probabilities we must
bear in mind two points: (1) When edge states move further
apart their physical overlap reduces and the corresponding
scattering probabilities reduce. (2) In a magnetic field states
lie at energies = (n+ 2)fico, ~ 2g p,sB a—bove the QAD poten-
tial. Transition in B:When we reduce B the edge states move
closer to the potential walls and closer together and therefore

p, &, decrease and pb increases on average. In detail, p& may
increase or decrease depending on the precise shape of the
QAD potential. Also, if b represents more than one scattering
event, pb may oscillate with the beat frequency between the
two LL's. Transition in Vg: When we reduce Vg both the
radius (R) and the gradient (Es) of the QAD potential at

EF are reduced. When 8 is reduced the constriction widths
increase and p„&, decrease but pb does not change. As Eg is
decreased the states encircling the QAD move outwards and

apart; p& decreases and p, &, increase. In addition, spin split-

ting causes p„«t- to be less than p«, &
but p»=p» .2 2 = 2

The closed edge states encircling the QAD form a set of
bound states which may be swept through EF as a function
of V or B. The conductance of the QAD, measured between
points A and B in Fig. 1, shows resonant structure when one
of these states passes EF . The nature of the resonance is a
sensitive function of the probabilities p, , pb, and p, . When

p, = 1 and p, )(()pb/(1+pb) resonant dips (peaks) below
(above) the 2e /h plateau occur due to bound states of the
n=O LL. Naively one might expect the condition to be

p, = 1 and p,)(()pb,. however, the asymmetry arises due
to the absence of time-reversal symmetry. When p, (1 a
second set of bound states in the n = 1 LL forms, giving rise
to a second set of resonances. These states enclose a larger
area than those of the n = 0 LL and so the resonances have a
shorter period as a function of B.

In a general QH transition, this picture predicts that reso-
nant dips below the ne /It plateau, due to intraedge-state
scattering through the nth LL bound states, evolve into reso-
nant peaks as interedge-state scattering between the (n + 1)th
LL and nth LL becomes dominant. When bound states of the
(n+1)th LL begin to form, a sinusoidal modulation of the
conductance appears, and as the (n+1)e /h plateau is ap-
proached the modulations evolve into resonant dips below
this plateau, thus completing the cycle.

We are now in a position to understand our complex ex-
perimental data. Figure 2(a) shows a series of B sweeps,
which illustrates the first part of our cycle. Sweep 1, at great-
est Vg, shows alternating pairs of resonant dips down below
2e /h. Successive dips, from different spins, have different
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FIG. 2. Conductance of the QAD at decreasing Vz illustrating part of our hierarchy: (a) Experimental data in the regime where decreasing
intraedge-state scattering in the n=p LL becomes dominated by interedge-state scattering, and (b) the conductance curves and scattering
probabilities obtained from our model. The vertical offset between curves is e /h.
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FIG. 3. (a) The solid line is experimental data, dominated by interedge-state scattering only. The dashed line shows the calculation of
2

(b) Similar oscillations are produced by the model using these values of pb(B) with a small constant p, .

amplitudes since p, T~p, &. In subsequent sweeps, as we re-

duce V~, p, decreases whereas pb remains roughly constant.
The conductance on resonance increases in magnitude and
the dips gradually become peaks, first for one spin, and then
the other. At the smallest V, pairs of peaks with equal
heights occur showing that p, has become exponentially
small and pbT pbl

2 = 2

Figure 3(a) shows data, similar to that of sweep 8, Fig.
2(a), in which the conductance is dominated by interedge-

2state scattering. Over this large field range we expect pb to
2decrease on average. We have made an estimate of pb as a

function of B, shown as a dashed line. (This calculation is
discussed later. ) The nonmonotonic decrease in pb, with a
minimum at 0.85 T, gives rise to the illusion that the spin

2
splitting has a maximum at 0.85 T. It does not. As pb in-

creases either side of 0.85 T, the width of the peaks in-

creases, due to the reduced confinement, so that the spin
splitting can no longer be resolved.

Figure 4(a) shows the variation of conductance as we con-
tinue to reduce Vg. (Sweep 1 is a section from Fig. 3.) As
intraedge-state scattering in the n = 1 LL becomes significant

(p, (1) the corresponding bound states form. This gives rise
to a sinusoidal oscillation of shorter period appearing in ad-
dition to the interedge-state scattering peaks. This is clearest
in the center of the figure (sweep 6) where the two oscilla-
tions are out of phase and pb is a minimum. On either side of

2the graph the broad oscillations due to the greater pb com-
bine with the sinusoidal oscillation to produce asymmetric

line shapes. The peak width of the sinusoidal oscillation de-
creases as V is reduced, and sweeps 7 and 8 show the pre-

2dieted dips down from the 4e /h plateau between 0.8 T and
0.9 T. Sweep 8 also shows peaks above 4e /h, due to
interedge-state scattering between the n=2 and n =1 LL's.
This is the start of the v=4 to v=6 transition as expected
from the cycle of resonant behavior we have proposed.

We have described the qualitative behavior expected from
the simple edge-state picture, but a deeper comparison can be
made by evaluating the conductance predicted by the dia-

gram in Fig. 1: The conductance G = 2 —Tr(TTt) for each
spin where T=T,&,Tb(1—BT„ATb) T,&, and

0 k4X2 r„
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with )t& = exp(2ilo@), k2= exp(2ilt P), A& = exp(2ilo7r),
and X„=exp(2iltm). The r's and r's are the refiection and
transmission coefficients of the scattering events a, b, and c.
We choose the scattering phase shifts such that r = y'1 —p

it 2

and r= ip /is th.e angle between scattering events b and a.
The conductance G exhibits a resonance whenever lo or li
become integers.

We use this model to test quantitatively the relationships
between p, , pb, and p, and the conductance, and we calcu-
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FIG. 4. The effect of the onset of intraedge-state scattering in the n = I LL: (a) Experimental data, and (b) the conductance obtained from

the model with the associated scattering probabilities (for clarity I —p„ is shown). The vertical offset between curves is 2e /h.
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late p, , pb, and p, from the experimental data. We can
assume that symmetric scattering probabilities are equal
since in the experiment the SG s were adjusted to be identi-
cal. We have not, as yet, discussed the positions of the reso-
nances in B and Vg, such a discussion is necessarily very
involved and in the case of QD's has provoked considerable
debate over many years. These positions are also subject to
the infl. uence of the Coulomb blockade. The positions form
part of the input for our model in the form of the dependen-
cies of Io and I&. For our purposes it is not necessary to
calculate these positions numerically from the QAD many-
particle addition spectrum since it is sufficient to take them
from the experiment.

Figure 2(b) shows the model predictions for the conduc-
tance sweeps in Fig. 2(a) with our estimates of the scattering
probabilities. For each sweep all scattering probabilities are
constant. Since all sweeps were taken over a small Vg range,

pb is constant throughout. The high magnetic field implies

p, =1 for all sweeps, and thus @ plays no part in the con-
ductance. Successive sweeps are distinguished by having re-
duced p, .

Figure 3(b) shows the prediction for the conductance
sweep in Fig. 3(a).p, (=0.05) is constant throughout; it may
be estimated from the peak heights following the analysis of
Fig. 2(a). p, =1 and pb is a function of B Unde. r these
conditions the convolution of 6 with the derivative of the
Fermi function, at a sufficiently high temperature, is a func-
tion of p& only; we make the corresponding convolution of
the experimental data to determine pb(B)

Figure 4(b) shows the predictions for the conductance
sweeps in Fig. 4(a).p, = 0.05 for all sweeps. pb(B) is known
for sweep 1 since it is a section from Fig. 3; the same pro-
cedure may not be used to calculate pb(B) for subsequent

sweeps as p, ~1.As Vg is varied the potential features that

give rise to a specific pb(B) move and hence pb(B) is dif-
ferent for each sweep. However, over a sufficiently small

range of Vg we expect this change to be linear and therefore
we can write pb(, +»(B)=pb(, )(B—hB) for sweeps s and

s+ 1. AB = 13 mT, deduced from the data which shows a
clear shift in the minimum of pb(B). p, increases with in-

creasing magnetic field. From the amplitude of the sinusoidal
oscillations, we calculate the value of p, at the center of each

sweep (p„), where the two oscillations are clearest. As Vs is

reduced, Eg decreases, and the B dependence of p, becomes
stronger. Over a small range in B we may write p,
~(1 p„)B—. The values of p„are shown in the figure.

The quality of agreement between our experiment and
model justifies our statement that interedge-state scattering
from higher LL's is not important. Sweeps 5—8, for fields
below 0.85 T, show the beginning of the next cycle where
intraedge-state scattering in the n = 1 LL and interedge-state
scattering between the n=2 and n=1 LL's become signifi-
cant. The latter results in the experimental dips down from
4e /h being less deep than those predicted, and when domi-
nant, gives peaks above 4e /h as shown in sweep 8. In this

regime, interedge-state scattering between the n = 2, n= 1,
and n=o LL's may occur. If interedge-state scattering to
lower LL's is sufficiently strong, oscillations with periods
relating to every possible closed-loop path in the edge-state
scattering diagram will superimpose, giving very complex
structure consistent with our cycle.

In conclusion, we have presented a general picture of cy-
clic change in resonant structure seen in conductance across
quantum Hall transitions in QAD s which is directly attrib-
utable to a pattern of changing scattering probabilities be-
tween edge states. We have confirmed this cycle for the
v = 2 to v = 4 transition; further confirmation is provided by
numerical evaluation of the relevant scattering diagram.
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