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Plasmon-phonon coupling in one-dimensional semiconductor quantum-wire structures
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Collective excitation modes of coupled one-dimensional electron —longitudinal-optical-phonon systems (as
occurring, for example, in GaAs quantum wires) are calculated in the mean-field approximation. In sharp
contrast to higher-dimensional systems, the plasmon-phonon coupling is found to be strong at all densities. We
also calculate the inelastic scattering rate of energetic quantum-wire electrons in the random-phase approxi-
mation, finding sharp thresholds in the scattering rate corresponding to the emission of coupled plasmon-
phonon modes.

In a doped polar semiconductor (e.g. , n-type GaAs) the
free carriers couple to the longitudinal-optical (LO) phonons
of the underlying lattice via the long-range polar Frohlich
coupling. On a microscopic level' this electron —LO-phonon
interaction leads to polaronic many-body renormalization of
the single-particle free-carrier properties, e.g., polaronic ef-
fective mass renormalization, lowering of the effective band
edge, broadening of the quasiparticle spectral function, etc.
For weakly polar material (e.g., GaAs or other III-V systems)
such polaronic many-body quasiparticle renormalization
(i.e., self-energy) corrections are small because the Frohlich
coupling constant o.(&1. For example, the typical polaronic
effective-mass renormalization in GaAs is of the order of a
few percent. There is, however, a much stronger quantitative
manifestation of electron —LO-phonon coupling in doped po-
lar semiconductors, which is the macroscopic coupling of the
electronic collective modes (plasmons) to the LO phonons of
the system via the long-range Frohlich coupling. This mode-
coupling phenomenon, which hybridizes the collective plas-
mon modes of the electron gas with the LO-phonon modes
of the lattice, gives rise to the coupled plasmon-phonon
modes (sometimes also referred to as the hybrid modes),
which have been extensively studied both experimentally
and theoretically in bulk and two-dimensional GaAs electron
systems. A good understanding of plasmon-phonon coupling
phenomena is important in developing quantitative theories
for many different experimental studies in doped polar semi-
conductors including light scattering spectroscopy, hot-
electron energy-loss processes, transport properties, and
ballistic electron transistors. In this paper we calculate the
coupled plasmon-phonon modes in one-dimensional (1D)
GaAs-based quantum-wire structures, and use our theory to
obtain the inelastic scattering rate of energetic quantum-wire
electrons as a function of their energy. Our most significant
finding is that the one-dimensional plasmon-phonon mode-
coupling effect is substantially "stronger" than that in
higher- (two- and three-) dimensional systems, and, in con-
trast to higher dimensions, mode coupling is significant in
one-dimensional quantum wires at all electronic densities.

In this calculation we assume the extreme quantum limit
with the occupancy of the lowest 1D subband only, and ob-
tain the Coulomb interaction matrix element v, (q) by taking
the quantizing confinement potential to be of infinite square
well type. Quantum wires with only single subband occu-

pancy are now available, and our interest in this paper is the
investigation of plasmon-phonon coupling in this extreme
1D limit. Note that the details of the confinement potential
(e.g., rectangular, parabolic, etc.) do not affect our qualitative
results. Our model consists of a one-dimensional electron gas
(1DEG) coupled to bulk dispersionless LO phonons at zero
temperature. Electrons interact among themselves through
the Coulomb interaction and through virtual —LO-phonon ex-
change via the Frohlich interaction. In calculating the effec-
tive 1D electron-phonon interaction we sum over the phonon
wave vector in the other two dimensions in the standard
manner. The Coulomb interaction is logarithmically diver-
gent in the 1D wave-vector space, and therefore we use the
more realistic finite width quantum-wire model. The LO-
phonon mediated electron-electron interaction is dependent
on both wave vector and frequency,

v~h(q, co) =M D (to).

Mq is the 1D Frohlich interaction matrix element given by
(fi, = 1 throughout this paper)

M =v, (q) 1 ——™,
where toLo is the LO-phonon frequency, ep (e ) is the static
(high-frequency) dielectric constant. The unperturbed LO-
phonon propagator is given by

2 GOLO
D (to)=

CO
—

COLo

The total effective electron-electron interaction is obtained in
the random-phase approximation (RPA) (Ref. 1) by summing
all the bare bubble diagrams,

v, (q)+ v,h(q, ~) v, (q)
v,tt(q, to) =

1 —[v.(q)+vugh(q ~)]IIo(q, ~) et(q, ~) '

(4)

where IIo(q, co) is the complex irreducible 1D
polarizability ' given by the bare bubble diagram. The total
dielectric function within the RPA contains contributions
both from electrons and LO phonons:
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1 e~ /Ep
E (q, cu) = 1 —U, (q)IIp(q, cp)+ z z . (5)

e~ /Ep cp /COLo no=0. 5 x (a)—

The collective modes are given by the zeros of the com-
plex total dielectric function:

e,(q, tp) =0. (6)

In the long-wavelength limit (q~0) we get the following
coupled ru collective modes from Eq. (6):

2 2
CO Lp CrO Tp

ru+(q) = cuLo 1+ 4 2r lin(q+)Iq +0(q )
COLp

and
1 2 3

wave vector q/kr

t0 (q) =
~Lp

2q V'r, iln(qa)i+0(q ), (8)

cop(q) ~q p= 2qgr, ~ln(qa) ~. (9)

where a is the width of the 1DEG (i.e., the confinement
width) and r, = 4me /(7rkF op) = 8/(7r n pas) with kF as the
1D Fermi wave vector (np is the 1D electron density of the

sample and an't the effective Bohr radius). In the long-
wavelength limit co+ is slightly greater than coLp and co is
slightly less than the corresponding uncoupled 1D plasmon
mode ~o.
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In Fig. 1 we show our numerically calculated coupled
plasmon-phonon collective modes for two different densities.
We show the coupled modes (ru ) as well as the pure plas-
mon mode (rpp) without the electron-phonon coupling. We
use the parameters coTp = 33.8 meV, ~Lp = 36.7 meV,

az =0.85X10 cm for GaAs, and a=100 A. It is clear
from Fig. 1 that mode coupling is strong at both densities
and shows up at wave vectors far from the resonance where

Cup(q) CuLo . This 1D situation is substantially different
from the corresponding 2D (Refs. 1 and 9) case where
plasmon-phonon mode coupling is significant only at high
densities or, equivalently, at wave vectors around the reso-
nance (cup = cuLo) condition. This strong 1D plasmon-
phonon coupling is a direct consequence of the logarithmic
singularity in the 1D polarizability, which makes it possible
for coo to exist for all wave vectors leading to strong
plasmon-phonon coupling. In two dimensions the low-
density plasmon disappears below the LO-phonon frequency
due to Landau damping, leading to weak plasmon-phonon
coupling except at higher densities. Note that the plasmon-
like mode ~ in Fig. 1 vanishes at a critical wave vector,

q, = —1+$1+ su To, and for q) q, we find only the phonon-
like mode (co+), which approaches cup for large q. This
behavior is similar to the corresponding high-density 2D
situation. Note that in three dimensions, with the plasmon
energy (cup) being finite at zero wave vector, the nature of
plasmon-phonon coupling is substantially different and
strong mode coupling occurs only for densities satisfying
the resonant condition coo= coLp.

The dynamical structure factor S(q, cu), which gives the
spectral weight of the collective modes, is proportional to the
imaginary part of the inverse dielectric function

0.0 0.5 1.0 1.5
wave vector q/kF

FIG. 1. Calculated collective mode dispersions co are shown as
a function of the wave vector q for two different 1D densities: (a)
np=0. 5X10 cm ' and (b) 1.0X 10 cm '. The plasmon disper-
sion without the electron-phonon coupling is shown by the dashed
line (asap). The dotted lines are the boundaries of the 1D electron-
hole single-particle excitation continuum.
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FIG. 2. Calculated structure factor S(q, co) as a function of the

frequency co for different wave vectors q. The delta function peaks
are the collective excitations with the weights written above the
peaks. The strength of the electron-hole continuum has been en-

hanced ten times larger than the actual value for visual clarity.
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FIG. 3. Spectral weights W(q) for the coupled cu and the

uncoupled coo modes are shown as a function of q for different
densities: (a) n 00.5 1X0 cm ' and (b) 1.0X10 cm
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S(q, ru) =— Im
nov, (q) e,(q, ru)

' (10)

For a true collective mode with zero Landau damping both
Im[e, (q, cu)] and Re[a,(q, ru)] vanish, and the inverse dielec-
tric function becomes a delta function with weight

1 p (c) no=1.5&&10'cm 'lLLJ

L

w(q) =
8

~„Re[~(q, ~)jl.=.,t, &
~ I ~ ~ \ I I I I ~ i I ~ I a

where cu;(q), defined by Eq. (6), is the collective mode fre-
quency at wave vector q. In the long-wavelength (q~O)
limit the weight of the plasmonlike mode vanishes as

wave vector k/k„

w(q) l „

i ~LO

I' 3

qv'r. l(qa)l 1— 2

I, roToi r, lln(qa)
(12)

FIG. 4. Damping rates I (k) of energetic 1D electrons for the

uncoupled (dotted line) and the coupled (solid line) 1DEG for three
different densities: (a) n = 05 010Xcm ' (b) 1.0X10 cm

(c) 1.0X10' cm ' cm, and

and the weight of the LO-phononlike mode is finite
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( ) I
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+ 2 coLo
(13)

In Fig. 2 the calculated RPA structure factor is shown for
i erent wave vectors and for density n =1.0X10 cm

F . 2b
weig t of the electron-hole continuum is h dis en ance in

ig. y a factor of 10 for visual clarity, and the numbers on
peaks indicate the actual strengths of the collective modes In
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Fig. 3 the calculated weight W [Eq. (11)] is shown for two
different densities: (a) n o

= 0.5 X 10 cm and (b)
n&=1.0X10 cm . (Dotted and solid curves indicate the
weights of the co and co+, respectively. ) For the sake of
comparison we also show the weight (dashed curve) of the
corresponding uncoupled plasmon ~0, neglecting any
electron-phonon coupling. The weights W(q) are not nor-
malized and only the relative weights are meaningful. In the
long-wavelength limit the phononlike mode has most of the
weight. In the intermediate wave-vector range, however, the
plasmonlike mode becomes stronger. For large wave vectors,
the weight of the co mode vanishes again because the plas-
monlike mode merges with the electron-hole continuum at a
critical wave vector and becomes overdamped by Landau
damping.

As an example of the role of plasmon-phonon coupling in
a physical process we calculate the scattering rate of ener-
getic electrons injected into the 1D quantum wire. The damp-
ing rate I (k) is given by the imaginary part of the self-
energy

I (k) =
I
lmX[k, ((k)]1, (14)

where g(k) =k /2m —p, is the energy of the "hot" electron
(or, equivalently the quasiparticle energy measured with re-
spect to the chemical potential p=FF). The quasiparticle
scattering rate 2I'(k), the inelastic lifetime [2I (k)], and
the inelastic mean free path l(k) =k/[2ml'(k)] can be cal-
culated from the damping rate I . In Fig. 4 we show the
damping rate for the uncoupled (dotted line) and the coupled

(solid line) 1D system, for three different densities: (a)
O.SX10 cm ', (b) 1.0X10 cm ', and (c) 1.5X10
cm . For the uncoupled 1DEG the quasiparticle scatters by
plasmon emission, which corresponds to the sharp threshold
peak in the dotted line in Fig. 4. There is no 1D single-
particle electron-electron scattering below a threshold critical
wave vector because the conservation of energy and momen-
tum restricts electron-electron scattering to an exchange of
particles. For the coupled 1DEG the quasiparticle decays via
the emission of coupled plasmon-phonon modes (ro and

ro+), which correspond to the two peaks in the solid lines of
Fig. 4. At low density the damping rate due to the plasmon-
like ~ mode is stronger than that due to the co+ mode. At
high density, however, the co+ mode is stronger, and the
situation is reversed. For very high electron density [Fig.
4(c)] we observe the excitation of an electron-hole pair just
below the plasmonlike mode threshold.

In summary, we have calculated the dispersion and the
spectral weight of the plasmon-phonon mode coupling in 1D
semiconductor quantum wires at zero temperature and within
RPA. We also calculate the 1D electronic inelastic scattering
rate due to coupled plasmon-phonon mode emission. Our
most important qualitative result is that the mode-coupling
effect is strong in a 1DEG at all densities and wave vectors
in contrast to the corresponding higher-dimensional situa-
tions.
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