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Giant conductance oscillations controlled by supercurrent flow
through a ballistic mesoscopic conductor
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We predict giant conductance oscillations for a normal ballistic sample in contact with superconducting
elements. The effect is due to quasiparticle interference leading to a resonant sensitivity of the normal current
to the superconductor phase difference 5@. In contrast to the case of diffusive transport the amplitude of the
oscillations can greatly exceed both e //h and the conductance of the system itself measured in absence of
superconducting elements. We suggest an experiment where the effect can be revealed most dramatically. A
simple relation between the resonant conductance and the Josephson current through the system is derived.

Interest in transport properties of systems with mixed nor-
mal and superconducting elements has been continuously
growing ever since the theoretical observation that elec-
tronic properties of a normal mesoscopic system are sensi-
tive to the phase difference AP between two superconduct-
ors in contact with the normal system. In several recent
experiments on metallic systems in the diffusive transport
regime the conductance was found to oscillate as a func-
tion of AP with maxima at even multiples of m. The diffu-
sive transport regime has been analyzed theoretically ' and
agreement found with experiments as to position and ampli-
tude of the conductance oscillations. In particular, the ampli-
tude of the conductance oscillations of the mixed system was
found to be of the same order as the conductance in the
absence of superconducting elements. On the other hand,
in ballistic superconductor —normal-metal —superconductor
(SNS) structures the main focus has been on calculating per-
sistent and Josephson currents.

Recently, experimental observations of a phase-sensitive
conductance have been made in certain InAs semiconductor
heterostructures. In these systems superconducting Nb
electrodes are in contact with a two-dimensiona1 electron gas
(2DEG). Transport is in the ballistic regime with very little
scattering from impurities and little normal scattering at the
NS boundaries between InAs and Nb due to the absence of a
Schottky barrier between these materials. As a result, dis-
tinct magneto-oscillations of the conductance with a period
h/2e were observed. In terms of the superconductor phase
difference 5 @, the period was again 2~, but compared to
the results for metallic systems the conductance maxima
were shifted by 7r. While the amplitude of the oscillations
was fairly small (~0.1X2e /h), they survived when the dis-
tance between the superconducting elements was increased.

The results of Ref. 13 give a clear indication that super-
conductors in contact with a ballistic mesoscopic system
have a qualitatively different effect on the transport proper-
ties than if the system is in the diffusive regime. The objec-
tive of this paper is to show that the difference is much more
drastic than what follows from the above comparison. We

predict that giant conductance oscillations with an amplitude
much bigger than the normal conductance in absence of su-
perconducting elements should be observable in an experi-
ment only slightly different from that carried out in Ref. 13.

A qualitative argument for the giant oscillation amplitudes
in the ballistic case starts from a description of the electron
transport in terms of resonant tunneling through quantized
energy levels of the normal (2D) mesoscopic part of the sys-
tem. Consider the system shown in Fig. 1. Here the 2DEG is
constrained to a quasi-1D channel, separated from the exter-
nal "reservoirs" L and 8 by quantum point contacts con-
trolled by the gates G&, G,', G2, and Gz. The supercon-
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FIG. 1. Suggested experimental layout for measurement of giant
conductance oscillations in a ballistic NS system (see text). Inset:
configuration realized in the experiment, Ref. 13.
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FIG. 2. Positions of the Andreev levels in different (vth and
v*th) transverse modes for a long channel (L~) go) [according to
Eq. (3)] (a) out of resonance, and (b) in resonance.

ducting electrodes S& and Sz are deposited on top of the
system, and a phase difference hP= Pi —$2 is maintained
between them (e.g. , by means of a threading magnetic flux).
The described configuration contains all the important fea-
tures of the one experimentally realized in Ref. 13 (see in-

set): the normal current is carried by quasiparticles, which
propagate ballistically in the normal part of the system, and
two clean NS boundaries with an adjustable phase difference
between the superconductors are present. The gates 6 allow
the coupling strength between the normal reservoirs (bulk
2DEG) and the ballistic channel to be controlled. '

Due to confinement both the transverse and longitudinal
motion of the electrons in the quasi-1D channel of Fig. 1 are
quantized, giving rise to a set of distinct energy levels. These
levels can be shifted by means, for instance, of gate voltages
or an external magnetic field. Typically only a single level
will be lined up with the Fermi energy and hence the con-
ductance will be of order 2e /h. In contrast —when Andreev
scattering of electrons traveling in the longitudinal direction
is present —the Fermi level itself rather than the bottom of
the subbands defined by the transversely quantized levels
will serve as a reference energy for the longitudinal quanti-
zation giving rise to so-called Andreev levels, which can be
driven by the superconductor phase difference AP [see Fig.
2(a)]. When b, g=(2n+1)m, N~ Andreev levels (one in
each of Ni transverse modes) are simultaneously brought in
line with the Fermi energy, thus producing a giant conduc-
tance peak [see Fig. 2(b)].' The width of the peak is of the
order of the single-electron transparency of the barriers be-
tween the 2DEG and the electron reservoirs, while its ampli-
tude is equal to Ni 2e /h, reflecting the N~-fold degeneracy
of the resonant level. This effect demonstrates the extreme
sensitivity of ballistic mesoscopic transport to supercurrent
Aow in the sample. A simple relation between conductance
and Josephson current can be obtained in this case [see Eq.
(6) below].

In order to consider the giant conductance oscillations
quantitatively, let us use the quasi-1D model, presented in
Fig. 3. The normal regions are modeled by ideal normal
wires, which support N~ modes of transverse quantization.
Scattering processes occur only at the NS boundaries (A, B)
and at the junctions (C, D). Scattering at the junctions is
described by real S matrices, which mix neither electrons
and holes nor different transverse modes. The latter assump-
tion, as well as the neglect of scattering in the wires them-
selves, is consistent with the low scattering rate in the 2DEG

FIG. 3. Quasi-1D model of the system shown in Fig. 1.

of InAs-based heterostructures. ' Moreover, we will as-
sume that only Andreev reflection occurs at NS boundaries;
this is reasonably close to the experimental situation. In our
analysis, we assume that the size L of the normal part of the
system is less than both the phase breaking length
L &

= UF r& and the normal-metal coherence length
Lr=h, vF/kliT (but exceeds the superconductor coherence
length (o). Here r~ is the inelastic scattering time, U~ is the
Fermi velocity of quasiparticles, kz is the Boltzmann con-
stant, and T is temperature. In the absence of transverse-
mode mixing it suffices to calculate the contribution to the
conductance from a single transverse mode. The total con-
ductance will then be given by summing over the transverse
modes.

%e use identical 3X3 S matrices to describe scattering
of, respectively, electrons and holes at the junctions A and B.
These matrices relate the incoming and outgoing wave am-
plitudes of the quasiparticles in the wires. They are param-
etrized by a real number 0 ~ e~ 1/2, which is the amplitude
for transmission of a particle between the system and a res-
ervoir. On the other hand, we assume that normal reflection
is absent at the interface between lead 1 (2) and the super-
conductor at point A (B) and that only Andreev reflection
takes place there.

The single-mode conductance can be expressed in terms
of the scattering coefficients of the system ~'~ as

2e f i BnF($) \6= 2 dg(TO +R, ) — + y,h Jo ( 8

where To (R, ) is the probability for normal transmission
(Andreev reflection) of an electron incident from the left nor-
mal reservoir; nF($) is the Fermi distribution function, and
the energy ( is measured from the Fermi level. The term r/in
(1) is a rapidly oscillating function of the electron momen-
tum [r/- exp(2ipFL), L being the length of the lead
ACDB] ' and is exactly zero if there is time-reversal
symmetry.

The scattering coefficients in (1) can be found by solving
the Bogoliubov —de Gennes equations in the normal part of
the system t l (for details see Ref. 21):

1 2

To(4')=R. (0)= X
1 + 2 e + cos 5 @+o.

l ~UF
(2)
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Here UF is the longitudinal Fermi velocity in the transverse
mode studied, and 6 P= P, —P2 is the superconductor phase
difference between the contact points.

In Eq. (2) we have neglected all quickly oscillating terms
[such as rr in (1)], and all terms of order higher than e . The
term 2e in the denominator must be retained, however, be-
cause due to the nonuniform phase dependence of (2), it
becomes important close to resonant values of AP.

Resonance is achieved at energies g„ofthe Andreev lev-
els in lead ACDB (in the limit L &) go):

~UF
[(2n+ 1)m~ b, rt ].
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Equation (3) reproduces the results for low-energy Andreev
levels in a long, clean SNS junction obtained by Kulik. As
one can see from (2), due to leakage to the normal reservoirs
these levels acquire finite width eA, U„/L.

In general the energies of Andreev levels in different
transverse modes do not coincide. However, for special val-
ues, 5P = (2n + 1)m, of the phase difference („=0 what-

ever the value of vFII is (i.e., irrespective of the transverse-
mode number). As a result, at these values of AP all N~
modes contribute one level to a N~-fold degenerate resonant
level at the Fermi energy.

At zero temperature the resonant conductance depends
only on To (0), R, (0). Since the contribution to the reso-
nant conductance of each transverse mode is exactly the
same, the total resonant conductance of the system (within
accuracy of e ) is

0.75-

0.5-
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FIG. 4. Normal conductance (a) and the Josephson current (b) in
the system as functions of the superconducting phase difference
between A and B, kP, calculated according to Eqs. (4,5) for the
values of a=0.005, 0.1, and 0.25.

2e 26'
G(~~)=N

h 1+2"+-.~@ (4)

On comparing the Josephson current (5) and the normal
conductance (4) one realizes that indeed, within an accuracy
of e, there exists a simple relation between them (see Fig.
4),

2eUII ( 1)n+re —2lnlesinngy
(5)

where UF=NJ X~ yUF p.l1

In the limit e—+0 this result reduces to the well-known
expression for the Josephson current in a planar SNS
junction. Our analytic result (5) agrees with numerical cal-
culations of the Josephson current in a 1D ballistic SNS
system, where the normal region was connected to a single
normal reservoir.

The conductance given by (4) is (i) directly proportional
to the cross section of the normal lead (i.e., to its conduc-
tance without an NS boundary), (ii) independent of the
length of the normal lead (as long as it is shorter than LT),
and (iii) the maxima of conductance measured as a function
of AP appear at odd multiples of m (see Fig. 4).

The simplest way to calculate the Josephson current is by
expressin it in terms of the excitation spectrum of the
junction. " ' ' The contribution from high-energy Andreev
states is then exponentially suppressed at low temperatures
(T(~A). It suffices, therefore, to use only the low-energy
Andreev levels, broadened by coupling to external reservoirs
(see above). One finds that

G(A@)=e' —
ll db, @+ h

N~
re UF

(6)

This expression is directly proportional to the number of
transverse modes. We have again —as in (1) and (2)—
neglected quickly oscillating terms, which play a minor role
in the many-channel case. The relation (6) reflects the fact
that, in the system considered, the same phase-sensitive An-
dreev states carry both the normal current and the Josephson
current.

Impurity scattering decreases the amplitude of the giant
oscillations, since in this case a gap opens in the Andreev
spectrum in the sense that no Andreev level can reach the
Fermi level for any value of b, @. Nevertheless, maximum
transparency at zero temperature [((")(6@)=min] is still
achieved at odd multiples of m in all transverse modes si-
multaneously [i.e., at the inflection points of the function
IJ(AP)]. The phase dependence of the oscillations and
their relation to the Josephson current will therefore qualita-
tively be the same as in the purely ballistic case, though their
amplitude will be suppressed.

As one can see from Fig. 1, the observation of the giant
conductance oscillations discussed above demands only a
slight modification of the experimental layout of Ref. 13.
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In conclusion, we have shown that in a ballistic SNS sys-

tem giant oscillations of normal conductance can be ob-

served. Their amplitude can greatly exceed the normal con-
ductance value obtained without superconducting elements

present, and is of the order of N~e /h&) e /h. These oscilla-
tions are related to the phase derivative of the Josephson
current in the system; a simple relation between the oscillat-
ing contribution to the conductance and Josephson current
was obtained. The effect can be observed using existing ex-
perimental techniques.
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