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Cyclotron-resonance anomalies in an antidot array measured by microwave photoconductivity
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A lateral antidot array with a lattice period of 400 nm fabricated with electron-beam lithography on
GaAs/Al Ga& As heterostructures was investigated by microwave photoconductivity. Commensurability ef-
fects and distinct deviations from the classical cyclotron resonance have been observed in agreement with

model calculations based on nonlinear dynamics of the electrons.

A two-dimensional electron system (2DES) embedded in
an array of strong repulsive potential pillars is called an
antidot array. Such systems are typically fabricated from a
high-mobility 2DES by etchin a grid of holes through the
two-dimensional electron gas. ' The resulting potential posts
are higher than the Fermi energy in the 2DES and hence
define classically forbidden regions for the electrons. The
electron motion between the periodically arranged artificial
scatterers results in distinct resistance anomalies at 1ow
temperatures. The dominant features in transport experi-
ments are, as a function of the applied magnetic field B,
pronounced resistance peaks which arise when the classical
cyclotron radius r, at the Fermi energy fits around a particu-
lar number of antidots (1,2,4,9, . . . in a square array). The
motion of the electrons is in general chaotic and a detailed
description of the resistance requires an elaborate analysis of
the electron motion. The result of such calculations explains
features in the experiment that are not covered by the simple
circular orbit analysis mentioned above. The fact that the
antidot posts are not steep but emerge softly from the bottom
of the conduction band is the origin of distorted cyclotron
orbits that show up in transport experiments. These noncir-
cular cyclotron orbits corresponding to nonlinear resonances
in phase space are expected to cause deviations from the
usual frequency f,=eB/2mrn* m* is the effective mass in
GaAs) of the cyclotron motion. ' A study of the cyclotron
resonance in antidot systems should therefore directly reflect
the signatures of the nonlinear dynamics of the electrons.

The typical experimenta1 method to detect such anomalies
is far-infrared (FIR) transmission spectroscopy. Experiments
for wave numbers larger than 15 cm ' have been carried out
previously. They show two dominant modes for the dy-
namic response in a perpendicular magnetic field B. To de-
tect commensurability effects at low magnetic fieMs opti-
cally it is necessary to work in the microwave regime.
Microwave transmission and reflection experiments in gen-
eral require complex techniques to eliminate multiple reflec-
tions of the waves between the surfaces inside of the sample
and the sample holder; they also require large patterned ar-
eas. Therefore we use here a microwave photoconductivity
experiment on a small Hall bar, which is much less affected
by these difficulties.

We prepared a standard Hall bar geometry (inset in Fig. 2)
from a high-mobility GaAs/AI, Ga&,As heterostructure. A
rectangular field on the left Hall bar is patterned with an
antidot grid of period a=400 nm. The antidots were fabri-
cated by electron-beam lithography and transferred to the
2DES by reactive ion etching. The right-hand part of the Ha11
bar is unpatterned and serves as a reference. The mobility p,
of the unpatterned 2DES is 3.5X 10 cm /V s and that of the
antidot region is 1.9X10 cm /V s measured at T=1.3 K
with an electron density Ws=2.0X10 cm for both re-
gions.

Our photoconductivity measurements were performed
with a double lock-in technique. ' We used different back-
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FIG. 1. Set of measured photoconductivity signals AU vs B
taken from the antidot region of the Hall bar at several fixed fre-
quencies. Despite the complicated nonresonant background, dis-
cussed in the text, a clear resonant signal is observable, which shifts
to higher B with increasing frequency.

ward wave oscillators and carcinotrons which generate mi-
crowave frequencies in the range from 60 to 166 GHz and
from 230 to 390 GHz. The experiments were carried out at
1.3 K. The amplitude of the sinusoidal current driven
through the contacts (1,2) of the Hall bar was 20 pA. With
our sample design we can measure the induced photovoltage
b, U„either in the antidot region using contact pairs (3,4)
and (10,9) or in the 2DES using (5,6) and (8,7).

A set of photosignals measured at several fixed frequen-
cies is plotted in Fig. 1 as AU vs B. We observe resonant
signals which shift to higher magnetic fields with increasing
microwave frequency. The resonances are superposed to a
nonresonant background which originates from heating of
the whole sample, including metallic contact pads and leads.
The shape of this background signal is given by the differ-
ence 5p „ofp at different temperatures. We used

p„(1.2 K)—p„(4.2 K)=b, p, „

to subtract the background
from the measured data, assuming that the shape of the non-
resonant signal is similar for all frequencies and intensities
used. To extract the resonant signal we first match Ap to
the photosignal 5p„rsolid line in Fig. 2(a)] by multiplying
with a factor n such that both traces are equal at very small
B~0.15 T. The matched trace nAp, displayed in Fig.
2(a) as a dashed line, alternates around zero. This alternating
behavior is due to the temperature dependence of the p
traces measured in antidot arrays: The maxima get reduced
while the minima increase with increasing temperature. At
magnetic fields where Ap =0, the sample is insensitive to
microwave radiation. To account for this alternating signal
we use the absolute value

i
b p —uA p, i. Further, we used

only those data points with absolute values larger than the

Bl o
FIG. 2. Inset: Hall bar with patterned (shaded) and unpatterned

segments. The period of the antidot lattice is a=400 nm and the
geometrical antidot diameter is dAD =80 nm. Here, m=100 p, m,
i=200 p, m, and 80=0.37 T. (a) Dashed line: uAp„=u[p„(1.2
K) —p„,(4.2 K)] matched to the photosignal Ap„„(solidline) for

f=86.7 GHz. (b) Solid line: absolute value of the resonant part of
the photosignal; dotted line: Gaussian fit used to determine the reso-
nance position.

nonresonant signal uA p„.The resulting trace [solid line in
Fig. 2(b)] is fitted by a Gaussian [dotted line in Fig. 2(b)].
The maxima of the Gaussians define the maxima positions
used in the following.

In Fig. 3(a) the extracted resonance positions f„,are plot-
ted vs B/Bo. Here, Bo=2fikF/ea is the magnetic field for
an orbit around one antidot, where kF is the Fermi wave
vector. BO=0.37 T is experimentally obtained from p
measurements. The main resonance positions follow
essentially the relation of a two-dimensional magnetoplas-
mon (2DMP): f„,= gf, +f„[dsahed line in Fig. 3(a)],
where f„(B= 0) = 59 GHz is the plasmon frequency. Recent
work shows that collective effects are important even in
100-p,m-wide Hall bars. Their dynamic response can be de-
scribed by a localized 2DMP oscillation where the width of
the Hall bar quantizes the wave vector of the plasmon
q= vr/w From th.e graph f„,vs B, with f„,taken from the
antidot area, the plasmon frequency f„=59GHz is obtained
from linear extrapolation to B= 0. With the same method the
effective mass of the 2DES, m*=0.071m, , is extracted
from the slope. The horizontal bars in Fig. 3(a) mark the full
width at half maximum (FWHM) obtained from the Gauss-
ian line fit. The p, trace is shown in Fig. 3(b) for compari-
son. Here, arrows mark the positions of the expected classi-
cal commensurate orbits. The characteristic downbending of
the lower branch co, known from previous experiments on
large antidot arrays, ' is not observed here for frequencies
up to 380 GHz. This deviation is characteristic for the tran-
sition from a classical cyclotron orbit around one antidot to
an edge magnetoplasmon (EMP) mode. For an antidot diam-
eter of 80 nm a magnetic field of B= 1.9 T would be neces-
sary to come close to this transition, which requires frequen-
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antidots and around one antidot at 130 GHz (B/Bp=0 4). and
at 350 GHz (B/B p

= 1), respectively, resonances with 2f, .

In order to confirm the interpretation of the experimental
results we calculated the frequency-dependent conductivity
in the antidot lattice. We model the antidot potential by

U(x, y) = Up(cos[(~/a)x]cos[(vr/a)y])P, (1)

where the even parameter p controls the steepness of the
potential. The frequency-dependent conductivity, which is
dominated by chaotic orbits, was calculated from the classi-
cal Kubo formula:

4OO -(b)
X
X

200

I I
~

I

cies above 750 6Hz. The most significant deviation of the
resonances in Fig. 3(a) from the usual 2DMP dispersion is a
lowering of the frequencies above B/Bp=1. Although the
FWHM becomes enlarged, the resonance maxima clearly
shift to lower frequencies. The amplitude of the photosignal
[Fig. 3(c)] has maxima near the magnetoresistance peaks of
commensurate orbits around one and four antidots, while
steadily rising towards an absolute maximum at B/Bp=1.
We ascribe the first maximum at 86.7 GHz and 0.43B/B p to
the commensurate orbit around four antidots. Further, reso-
nances that do not correspond to simple commensurate orbit
peaks exist in the magnetic-field range between 0 5B/Bp and.
0.7B/Bp. At 0 63B/Bp, the fre.quency tends to higher values
than the 2DMP frequency. In the range of the magnetoresis-
tance peaks corresponding to commensurate orbits around
nine and four antidots [triangles at about 0 35B/Bp in Fig. .
3(a)], we observe resonances with twice the cyclotron fre-
quency 2f, . They can be observed over a large frequency
range from 90 to 115 6Hz. From other measurements, not
shown here, we find for the commensurate orbits around four
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FIG. 3. (a) Dispersion f vs B/B p of the experimental resonance
positions from the antidot system; the bars mark a few typical
FWHM. The symbol size roughly illustrates the resonance ampli-
tude. The gray fields on the left- and right-hand sides show the

ranges where no microwave frequencies were available. Dashed
line: calculated 2DMP dispersion for fr= 59 GHz with the effective
electron mass m~=0.071m, . Dotted line: calculated cyclotron
resonance line with f=2f, (b) p . taken at T=1.3 K; the arrows
mark the classically calculated B positions of the commensurate
orbits around 1, 2, 4, and 9 antidots, respectively. (c) Resonance
amplitudes vs f obtained from normalization and Gaussian fit of the

photosignals.
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where p~ is the phase-space fraction of pinned orbits and

(v;(t) v, (0))I. is the velocity correlation function of chaotic

orbits averaged over phase space. The magnetoresistance
p„calculated for p=16 by tensor inversion of Eq. (2) for
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FIG. 4. (a) Calculated cyclotron resonance frequencies f, for the
model potential of Eq. (1) with P=16. The calculated magne-
totransport curve p, (B/Bp) (dotted line) for this P is in good
agreement with the experimental curve of Fig. 3(b). The dots show
the resonance frequency f„,vs B/Bp. Dot sizes indicate resonance
height; vertical lines show the peak width at half maximum. The
solid line is the MP dispersion of the unpatterned 2DES. (b) Peri-
odic orbit at B/Bp=0 3(solid line) . with reduced radius compared
to the free cyclotron motion (dotted line), yielding an increased
resonance frequency. (c) Periodic orbit at B/Bp=0.5 (solid line)
with increased radius compared to the free cyclotron motion (dotted
line), yielding a reduced resonance frequency. (d) and (e) Periodic
orbits at B/Bo=1.0 and 1.1, respectively. The individual loops get
more and more distorted by the antidot potential with increasing
magnetic field, leading to reduced resonance frequencies. (f) Peri-
odic orbit enclosing one antidot, with frequency ratio 3, i.e., it en-
circles the antidot three times before it closes. (g) Frequency spectra
of the orbit in (f). In addition to the main frequencies, i.e., the
cyclotron frequency f, and 3f, , harmonics show up due to the
noncircular orbit.
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co=0 is in good agreement with the experimental curve of
Fig. 3(b). We thus compare the maxima of o.(cu,B) for this
value of P with the experiment. A more detailed analysis of
the theoretical findings, including calculations for different
values of P, will be given in Ref. 10.

The resonance frequencies f, are given by the relative
maxima of the real part of (o „),calculated from Eq. (2).
To compare with experiment we plot in Fig. 4(a)

f„,= gf, +f as a function of 8/Bo, involving the experi-
mentally obtained plasmon frequency f~. The resonances
are in good agreement with the experimental data. The cal-
culated resonances stem from different classes of orbits in-
cluding cyclotronlike motion around 1, 2, 4, and 9 antidots
but also of more complicated periodic and quasiperiodic or-
bits. The resonances that lie far off the free cyclotron fre-
quency in the magnetic-field range between 0.758/Bo and
0.98/Bo [Fig. 4(a)] are, for example, related to one compli-
cated clover-shaped and unstable orbit. Such orbits require a
perfect antidot potential and are thus unlikely to be observed
in experiment. Here we focus on the magnetic-field ranges
around 8/Bc=0.4 and 1.0, where characteristic deviations
from the cyclotron resonance of the free electron gas can be
observed.

The peak in p„at8/Bo=0 42 is re.lated to cyclotron
orbits that encircle four antidots and the resonance lies ex-
actly on the free cyclotron frequency. For slightly smaller
magnetic fields these cyclotron orbits are deformed, as indi-
cated in Fig. 4(b), with reduced radius, thus yielding slightly
enhanced resonance frequencies. For magnetic fields slightly
above 8/Bo=0.42 the effective radius of the orbit is in-
creased by the potential [see Fig. 4(c)], leading to a reduction
of the resonance frequency. This crossover is also indicated
in the experiment. The data points in Fig. 3(a) have a ten-
dency to higher frequencies for magnetic fields left of
8/8&=0 43 and to low. er frequencies on the right-hand side.

A similar crossover at 8/8&=1.0 evolves more clearly.
Especially pronounced is the reduction of the resonance fre-
quency between 8/Bo=1.0 and 1.2, clearly observable both
in the numerical calculations and in the experimental data.
The understanding of this frequency reduction requires a pre-
cise description of the electron dynamics. So far, electron
motion was only described in terms of periodic orbits. How-
ever, previous work shows that the main contribution to clas-

sical transport stems from chaotic orbits. Thus, while at, e.g.,
8/B&=1.1 a circular cyclotron orbit located in the center of
the nonlinear resonance still exists, the more complicated
orbits become increasingly distorted by the antidots for
8/Bo)1. Figures 4(d) and 4(e) show how the individual

loops of these orbits get widened by the potential if the mag-
netic field is increased from 8/Bo= 1.0 to 1.1, thus yielding
the reduction of the resonance frequency that is observed in
the experiment.

Whereas the harmonic motion of the free cyclotron orbits
is characterized by one single frequency, the frequency spec-
trum of a generic nonlinear oscillation shows harmonic fre-
quencies, as is illustrated in Fig. 4(f) for a distorted cyclo-
tronlike orbit in the antidot potential. In our model
calculations we found significant resonances at twice the cy-
clotron frequency for 8/Bo=0.7 to 1.2, in agreement with
the experimental ones found at 8/Bc=1 [not shown in Fig.
3(a)]. Within our model calculations no pronounced 2f,
resonances evolve at 8/Bc=0 35 in c.ontrast to the experi-
ment [Fig. 3(a)]. This is not crucial to the comparison, how-
ever, since the actual strength of the 2f, resonances depends
strongly on the exact shape of the potential. Resonances and
splittings of the MP dispersion at 2f, have also been ob-
served with FIR spectroscopy on 2DES, in quantum dot'
and antidot arrays, ' and in quantum wires.

In conclusion, we have presented the spectroscopic detec-
tion of commensurability effects in small antidot arrays,
which we performed by a photoconductivity experiment.
Model calculations based on the chaotic motion of electrons
in an array of soft potential posts are in very good agreement
with the experiments. The observed resonances with twice
the cyclotron frequency are a direct consequence of the an-
harmonic motion of electrons in nonparabolic potentials.
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