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Thermopower of composite fermions
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Measured diffusion thermopower of a low-disorder two-dimensional hole system in the extreme quantum

limit is used to probe the thermal properties of the recently proposed particle-fiux composite fermions (CF s).
The data are consistent with the CF's exhibiting the integral quantum Hall effect away from filling factor
p= 2. The magnitudes of the thermopower maxima between the fractional quantum Hall states yield an estimate

for the CF Landau-level broadening I CF, which agrees well with I cF deduced from the analysis of the

excitation energy gaps for the fractional liquid states.

The striking similarities between the integral and frac-
tional quantum Hall effects (IQHE and FQHE) observed in
two-dimensional (2D) systems have recently found an el-
egant explanation through a gauge transformation that at-
taches an even number of flux quanta (2mtI~, where m is an

integer and tzi=h/e) to each particle. ' The quasiparticles
obey Fermi statistics and are termed composite fermions
(CF's). They experience an effective magnetic field B*,
which is zero at Landau-level filling factor v= I/(2m), even
though the applied magnetic field B=(n, /v)(h/e) may be
of several tesla (n, is the particle density). Within this
theoretical framework, the FQHE corresponds to the
Shubnikov —de Haas effect at low B* and the IQHE at higher
8* of the CF's. The effective filling factor for the CF's,
v*= IpI (p is an integer) relates simply to that of the bare
particles as v=p/(2mp+ 1), and their effective mass is dif-
ferent from that of the bare particles at 8= 0, as it depends
only on the particle-particle Coulomb interaction.

The results of several recent experiments were found to
be remarkably consistent with the predictions of the CF
formalism. Among these are the surface acoustic wave mea-
surements by Willett and co-workers, which not only pro-
vided the initial motivation for the CF theory of Halperin,
Lee, and Read, but also demonstrated the existence of a
Fermi surface for the CF's. Equally illuminating are the ob-
servations of CF geometrical resonances near v =

~ in

microstructures, ' and transport measurements ' which have
provided information on the CF effective mass and scatter-
ing. Missing, however, are detailed and quantitative experi-
mental results on the thermodynamic properties of the CF's.

Most parameters that are directly related to the therrnody-
namic properties of 2D electronic systems, such as the elec-
tronic specific heat, are hardly measurable because of the
dominant lattice contribution. ' An exception is the diffu-
sion thermopower, which is experimentally accessible at
very low temperature (T) and can render valuable
information. ' For example, the diagonal thermopower of the
insulating phase reentrant around v= —, FQH liquid in a
dilute 2D hole system (2DHS) was observed to diverge as
T—+0.' This observation provided strong evidence that an

energy gap, and not a mobility gap, separates the ground
state, presumably a pinned Wigner crystal, from its excita-
tions. More recently, thermopower measurements at p=-,'

and -', were found to be consistent with the presence of a CF
Fermi surface. Here, we report measurements of the low-T
thermopower in a very lom-disorder 2DHS revealing strong
FQH states in the filling range —,

'~ v~ —,. We show that both
the temperature and magnetic field dependence of the FQH
thermopower data can be explained by treating the FQHE as
the IQHE of the CF's. From the data, we also deduce a CF
Landau-level broadening 1 CF which compares well with
I CF obtained from magnetotransport measurements.

The sample, grown by molecular-beam epitaxy on an un-

doped (311)A substrate, consists of a 200-A GaAs quantum
mell surrounded by A1036a07As spacer layers and Si-doped
regions. The resulting 2DHS had a density of 1.4X10
cm . After thinning the sample and roughening the back
surface (to reduce the phonon mean-free path and there-
fore the phonon-drag contribution to the thermopower), a
6 X 2-mm sample was glued at one end to the cold finger of
a dilution refrigerator and at the other end to a heater, using
GE varnish. In addition to electrical contacts, two carbon-
paint thermometers were used to measure the T drop along
the sample, which was kept below 10% of the mean T. Ther-
mopower was measured by applying a sine-wave current at
frequency f= 3 Hz through the heater and measuring the
voltage induced along the sample at frequency 2f with a
lock-in amplifier.

Figure 1 shows the 8 dependence of the diagonal ther-

mopower, S, at different temperatures. The data exhibit
strong S„oscillations characteristic of the IQHE and
FQHE. ' ' The developing high-order FQH states up to
v= —,

' and -', attest to the very high quality of the sample. The
magnitude of S at all v decreases with decreasing T al-

though its T variation depends on v. At the integral and
fractional v where the IQHE and FQHE are observed, 5
minima decrease exponentially with decreasing T. At the
fillings where S, exhibits maxima, on the other hand, S
has a power-law dependence on T. As we will discuss in
more details later in the paper, at these filings, we can dis-
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like behavior of S for 1)v~-,' to the semiclassical be-
havior of CF's when k&T becomes of the order of the acti-
vation energy of the FQH liquid states.

In summary, we have measured 5 of a low-order 2DHS
at very low temperatures and high magnetic fields, and find
that the data support the CF formalism. The T and 8 depen-
dences of the diffusion S„in the FQH regime 3~ v~ —,

' are
consistent with the prediction that CF's exhibit IQHE away
from filling factor v= 2. The values of I deduced from 5„

for both bare holes and CF's agree with the magnetotransport
data.
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