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We use the density-matrix renormalization-group technique developed by White to calculate the spin corre-
lation functions (S'„+, S'„)=(—1)'cu(l, N) for isotropic Heisenberg rings up to N=70 sites. The correlation
functions for large i and N are found to obey the scaling relation cu(l, N) =ui(l, ~)fxr(l/N) proposed by
Kaplan et al. , which is used to determine Oi(l, ~) The. asymptotic correlation function ai(l, co) and the mag-
netic structure factor S(q = 7r) show logarithmic corrections consistent with ai(l, ~)-a glncl /i, where c is
related to the cut-off dependent coupling constant g,tt(lo) = 1/ln(clo), as predicted by field theoretical treat-
ments.

Although the exact ground state of the spin-1/2 chain is
explicitly known, the Bethe-Ansatz wave function is far too
complex to derive directly the spin-correlation functions.
Other methods like bosonization or conformal field theory
have to be used to get information about the asymptotic be-
havior of these functions. In general quantum spin chains
and in particular their continuum versions are very active
fields of research, because they serve as a testing ground of
various analytical approaches. ' Recent field-theoretical stud-
ies predict the existence of logarithmic corrections to the
finite-size scaling of the energies of these systems and also to
the power-law behavior of the spin-correlation functions
stemming from marginally irrelevant operators . The modifi-
cation of the power law originally derived by Luther and
Peschel has its physical origin in umklapp scattering pro-
cesses which appear in the fermionic representation of the
model after Jordan-Wigner transformation and has been an-
ticipated a few years ago. Logarithmic corrections to the
scaling of the energies and to the correlation functions were
obtained by Aleck et al. applying conformal field theory to
Wess-Zumino-Witten nonlinear-cr models. Giamarchi and
Schulz and Singh et al. used a renormalization technique to
study the sine-Gordon Hamiltonian and obtained to leading
order (—1)'(ln l)U /l for the asymptotic decay of the spin-
correlation function in the case of the isotropic Heisenberg
chain.

In spite of this analytical progress, numerical attempts
have given contradictory results. Kubo, Kaplan and
Borysowicz found a small logarithmic correction of the
form (Inl) /l with an exponent 0.2~ o &0.3 instead of 0.5 as
predicted by theory. Later attempts to check the theoretical
prediction were made by Liang and by Lin and Campbell,
who reported the absence of logarithmic corrections
(o =—0) for spin-1/2 chains, whereas Sandvik and
Scalapino' report an exponent o =1/2.

Progress on the numerical side was hampered mainly be-
cause highly accurate diagonalization results could be ob-
tained only up to N = 30, while Monte Carlo data for larger
systems had too large statistical errors. An equally important
reason was that it had been assumed that the data can be
analyzed using the universal asymptotic law (ln l) /l. ' In
this paper we clarify and conclude this long dispute on the
numerical evidence of the logarithmic corrections by consid-
ering the nonuniversal scaling of the coupling constant.

We use the density-matrix algorithm (DMA) (Ref. 11) to
study the large-distance decay of the correlation functions
and find that they can be calculated with such high precision
for sufficiently large systems that the subtle logarithmic cor-
rections to the correlation functions can be resolved. This
technique leads to highly accurate results for much larger
systems than those which can be solved by straightforward
exact diagonalization. The DMA allows for a systematic
truncation of the Hilbert space by keeping the most relevant
states in describing a state (e.g. , the ground state) of a larger
system, instead of the lowest energy states usually kept in
previous real space renormalization techniques. A general it-
eration of the method consists of (i) The effective Hamil-
tonian defined for the superblock 1+2+ 1 '+ 2' (where the
blocks 1 and 1' come from previous iterations and blocks 2
and 2' are new added ones) is diagonalized to obtain the
ground state ~l/I) (other states could be also kept). (ii) The
density matrix p;; = X;P;/P; / is constructed, where

p;, =(ij~i/t), the states ~i)(~j)) belonging to the Hilbert
space of blocks 1 and 2 (1' and 2'). The eigenstates of p
with the highest eigenvalues (equivalent to the most probable
states of blocks 1+2 in the ground state of the superblock)
are kept up to a certain cutoff. (iii) These states form a new
reduced basis to which all the operators have to be changed
and the block 1+2 is renamed as block 1. (iv) A new block 2
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FIG. 3. Comparison of Iso(/, N)/f(l/N) versus I for
N = 14—70 with l co,(l, ~) (solid curve). In the inset
1 re(l, N)/f(l/N) (filled circles) and leo(l, N) (open circles) are
shown for N=70 showing how f(l/N) corrects the finite-size ef-
fects.

the finite-size correction to the correlation functions,
we show in the inset the bare data for a finite system,
leo(l, N) as compared to the finite-size corrected values
lcm(l, N)/f(l/N). We see that the corrections are largest for
l=N/2

I
as can also be seen from Eq. (5)].

The logarithmic corrections to the correlation function
follow from the scaling relation

G;(r)
G;(ro)

(= —exp —4 orb; d(lnr ')g(r ')
'~

o

(6)

g(ro)
1+vrbg(ro)ln(r/ro)

'g r)= (7)

For spin-1/2 the parameters are determined by b = 4/+3 and
4b;/b= —1/2. The r dependence of the coupling constant
leads after integration to the multiplicative logarithmic cor-
rection of the form

G, (r) ro g(ro)
G (ro) r g(r)

For the following analysis we insert Eq. (7) and obtain

-1
G;(r) ro ~ r

=gg,„—' ln —e"ga
G(ro) '" r pro

where we use the notation of Ref. 4 with G;(r) —= co(r, ~) and
I replaced by the continuous variable r. The r dependence of
the coupling constant to one-loop order is given as

FIG. 4. Logarithmic corrections are clearly seen in the quantity
leo, (l,~) versus l, which is well fitted by the analytical expression
(10) (solid curve).

with g,rt(ro)= 4vrg(r—o)/Q3 This e.quation shows that the
universal, i.e., coupling constant independent, asymptotic re-
lation (1/r)(ln r) / is only reached for sufficiently large dis-
tances r.

We fitted the curves in Fig. 3 with the dependence pre-
dicted by renormalization group

leo(l, ~) = a gin(cl), (10)

where c = expI 1/g, rt(lp)]/lp defines the scale on which the

asymptotic behavior cu(l, ~)- gin(l)/l is approached. Figure
4 gives a comparison of the data and our best fit with
a = 6.789' 10 and c = 23.21 . This implies that the asymp-
totic regime, i.e., in(c)/in(l)~(1, is reached only for chains
with more than several thousand sites. The small deviations
may stem either from remaining uncertainities in the deter-
mination of ro, (l,~) or from the one-loop calculation, which
is exact only to order O(g ). From the value for c we obtain
for the coupling constant g,rt(20) =0.163 at lo=20. This
may be compared with an effective coupling constant

g,rt(20)-0.26 deduced numerically from the scaling of the
ground-state energy and triplet and singlet excitations.

We stress that our analysis of the data differs from earlier
numerical studies where the asymptotic expression
co(l, ~)—=a(lnl) /l was considered assuming c= 1 and with
o. as a free parameter. Sandvik and Scalapino, on the
other hand, suggested that previous numerical studies did
not succeed in finding the proper exponent since the scaling
relation (1) may not hold in the presence of logarithmic cor-
rections. They proposed instead an alternative relation which
connects co(l,N) with the asymptotic correlation function
ro(l, ~) and which does not obey (1).' After subtracting the
oscillatory 1/l contribution from the correlation function

they analyze the ratio D(l,N) = ru(l, N)l/gin l, assuming the

log corrections are given by gin l. Given our results

D(l,N) ~f(l/N) gin cl/gin l, i.e., the functional used in
Ref. 10 accounts for finite size effects but also for parts of
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the log corrections, consequently their analysis concerning
the form of these corrections is not conclusive.

Finally it should also be possible to determine the loga-
rithmic corrections from the N dependence of the structure
factorS~(q= m)=Xtta(I, N) . Earlier attempts ' were not
successful because this expression also involves large finite-
size effects as co(I,N) =—co(I,~)f(l/N). It is therefore better
to consider the quantity

1.6

1.5

1.4-

1.2

Given Eq. (10) for ta(l, ~) at large I one expects
Siv(m.)—=const+-, aln (cÃ/2). From our fit of S~ we find
values for a and c which are very close to the parameters
deduced from Ica(I,~) (see Fig. 5).

In conclusion we have shown that the scaling relation
proposed in Ref. 16 provides a very accurate description of
finite-size ef'fects for large enough systems and distances
(I)7), and we have obtained an improved value for the
exponent entering the expression for the scaling function.
Furthermore we have shown that the correlation function
ca(I,~) of the infinite system, which can be determined from
N-site rings for I~N/2, does not obey the universal asymp-
totic law (1nl) /I as was assumed in previous numerica1
work, but is governed by the nonuniversal scaling of the
coupling constant. Our data confirm the multiplicative loga-
rithmic corrections to the spin correlation function of the
form ca(I,~)—a gin cl/I as derived from quantum field
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FIG. 5. S&(vr)[Eq. (11)]vs ln (N). Comparison of data (+) and
fit (solid line) using $~(vr) —=const+ 3 a ln (cN/2) with const
= —4.06X 10, a = 6.67X 10 and c = 25.5.

theory, " and we determine in particular the scale parameter
c of the logarithmic term and the related effective coupling
constant which has not been obtained by these approaches.
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