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Propagating S= particles in S= 1 Haldane-gap systems
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Inspired by the recent experiments on Y2 Ca BaNi05, we discuss the dispersion relation of the S= 2

particles in the 5=1 Heisenberg and valence bond solid model in the limit of small hopping amplitudes. The
effective S= 2 edge spins mix with the spin of the impurity resulting in one fourfold and two twofold degen-
erate bands. We briefly discuss the interaction between the S= 2 particles arising from the background.

Recently, the family of the quasi-one-dimensional materi-
als showing the Haldane gap has been enlarged by the
charge transfer insulator Y2BaNi05. In these materials the
Ni + ions with S=1 are surrounded by oxygens forming an
octahedron, Ni06. These octahedra are linked and form well
separated chains, making an ideal one-dimensional S=1 an™
tiferromagnet. Susceptibility and neutron scattering measure-
ments have observed a spin gap of = 100 K (9 meV). The
two relevant Ni orbitals are 3d3,2 2 and 3d 2 y2 The latter
is almost localized, while the 3d3 2 2 orbital has finite over-
lap with 2p, orbital of the O.

The importance of Y2BaNi05 is not only being another
Haldane gapped system, but by replacing the off-chain Y +

by Ca + one can dope the chain by holes; thus one can
introduce carriers into a gapped spin liquid. The doped ma-
terial, Y2 Ca BaNi05, has been studied by DiTusa et al.
(Ref. 4). The addition of carriers lowers the resistivity and its
temperature dependence cannot be described as thermal ac-
tivation across the charge gap. Polarized x-ray absorption
experiment showed that upon doping, the holes go to the
2p, orbital of the 0 between the Ni + ions. Furthermore,
new states with 5 between 1 and -', per impurity appeared
inside the Haldane gap.

It is not clear at the moment, what a minimal microscopic
model capable to describe the experiments can be. Neither is
c1ear the importance of the disorder caused by replacing Y by
Ca (the effect of the bond disorder was addressed in Refs. 5
and 6). If the disorder can be neglected, then, as far as the
low energy physics is concerned, the effective model Hamil-
tonian can be that of the 5=1 Heisenberg model, where ad-
ditional $= 2 objects are added (see Fig. 1). The question of
localized S=2 impurities was discussed in Refs. 5 and 7.
However, nothing can exclude that the holes can move, and
it raises a very interesting question: what are the low energy
properties of doped Haldane systems? For this reason here
we discuss a simple Hamiltonian to describe such systems. It
turns out that even in that simple Hamiltonian, to solve the
propagation of one spin 5= 2 object is not trivial, and the
interaction between the spin 2 objects due to the S=1 back-
ground is rather complicated.

A similar problem is the propagation of S=G holes in the
Haldane gap systems. However, it corresponds to a simul-
taneous hopping of two electrons, which can be favorable to
one electron hopping only in limited circumstances.

To describe the interaction between the 5=1 spins of the
Ni + ions, we consider the following rotationally invariant
spin Hamiltonian

HO=~X [S"S+t P(S"S+t) j.

HJi=2J'g (S;.cr;+t/2+S;+q. o;~t/2), (2)

and finally, there are the Hamiltonians describing the effec-
tive hopping of the holes on the 0 sites:

Ni Ni

FIG. 1. Schematic diagram of the Ni —0 chain with typical low-

energy level occupation. The hole is on the second O.

We will concentrate on the special cases of P=O and
P= —

—,'. The former is the Heisenberg model for 5=1, while
the latter is the valence bond solid (VBS) Hamiltonian,
where the ground-state function is known. Both Hamilto™
nians have a gap in the excitation spectrum. Since the holes
break the valence bonds of the S=1 host, we get open chains
segments between the S=-,' objects (see Fig. 2). The ground
state of an open chain is fourfold degenerate in the thermo-
dynamic limit. This can be simply explained by noticing that
the construction of the VBS state of an open chain leaves
effective —,

' spin objects at the ends of the chain. These edge
spins can form a triplet and a singlet, and the energy splitting
for ¹itelong chain is -exp( —N/Q and it disappears for
N~~, where ( is the correlation length. One can actually
see these edge states, and their extension is over several lat-
tice sites. ' For P= —,the correlation length is 1/ln3, while
for the Heisenberg model /=7. We denote the triplet wave
function by T~' and singlet by 5&, where the superscript
~ 1,0 denotes the z component of the triplet. For N even, the
singlet is even and triplet is odd in parity, while for N odd
the parities are reversed.

Now, let us turn to the Hamiltonian describing the effect
of 5=2 impurities. First of all, an impurity at site i+ —,

' will
change the effective J coupling to J& between the 5=1 spins
at site i and i+ 1 in the Hamiltonian in Eq. (1).Next, there is
an interaction between the impurity and S=I spins (see
Refs. 5 and 7):
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FIG. 2. Part of the S=1 chain with two S=2 spins. Between
them the three S=1 spins form an open chain.

and

lD„+'")= $2/3lv;+gk) $1—/3lT,'tk),

lD, '")= $2/3lT; Tk) $1-/3lT,'gk)

H, =tg P, ,

HJ= 2J P;(Si W/+ 1/2+ W; 1/2 S;),

where the factor 2 in front of the J and J' is for convenience
and o is the spin operator of the S=2 spin. The operators

P; exchanges the occupation of the site i+ —,
' and i —

—,', i.e., if
the hole is on site i+ -„ the P; will move it to i —

—, if that site
was empty. We do not allow two S =-,' objects to occupy the
same site, as it costs a lot of energy. Clearly, the Harniltonian
H Ho +HJ +Hg +HJ is isotropic.

In the following we will restrict ourselves to the case
when the parameters t and J describing the propagation of
the S=-,' objects are small compared to the Haldane gap, i.e.,
J of the host S=1 system. Furthermore, Ji and J' are as-
sumed small as well. In this limit the energetically large ex-
citation of the S=1 host created during the motion can be
neglected and we will work in the subspace where the wave
function of the S=1 sequences are the singlet and triplet
wave function described above. Our approach is similar to
the variational wave function applied in Ref. 7.

Given the Hamiltonian and the constraints above, let us
now turn to the calculation of the dispersion relation of a
single hole. First, let us construct the trial wave function of
the L-site periodic chain with one impurity:

1
lS, rrk) = g e'/lS, rr;j + 1/2),

L j

lD ")=lS,'Sk&.

The parity of the states defined above is different, and
is determined by the parity of the lTL) and lSt). For ex-
ample, if we define the reflection operator R so that it
changes the spin at site j to —j, then RlQk)=rlQk),
RlDk)=rlDk) and RlDk)= —rlDk), where r= —1 for L
even and r = + 1 for L odd.

The rotational invariance of the Hamiltonian implies that
the Hamiltonian matrix among lQk) is diagonal, and there
are matrix elements between the lDk) and lDk) states only.
Furthermore, since the parity of the states lDk ) and

lDk
'

) is different, the matrix elements with some Hermit-

ian operator A commutable with R will satisfy

(D„lA lDk) = —(D „lA lD k). These arguments give

HlDk) (eT+bk) lDk) tcklDk) ~

HlDk) tcklDk)+ (es+ dk) lDk),

Hl Qk) = (er+ ak)
l Qk).

Here es and eT are the energies of the lSL) and lT/), respec-
tively, and for small values of the interaction parameters
compared to J they depend only on J' apart from the finite-
size effects mentioned earlier. Then, the dispersion relation is

1
lTtok)= g e' '.lTLo ,j+1/2), "

L j
(4) bI + T+ du+ s

eD(k) =

where lSt o",j + 1/2) and
l T/ o;j + 1/2) denote the sta. tes with

hole at site j+ 2.
Now it is a good point to say something about the addi-

tion of angular momenta. The state of the two edge —,
' spins

and the impurity —,
'

spin has one S= -', and two S= —,
' represen-

tations. Since our Hamiltonian is rotationally invariant, we
expect one fourfold degenerate band with total spin S=-',
(quartet) and two twofold degenerate bands with S= —,

' (dou-
blet). The S=

2 representation can be constructed as follows:

lQ„+'")= j1/3lT,'gk)+ $2/3 T,'1 k),

lQ„'"&= g1/3l T; Tk&+ -q2/3l T,'Ik&,

IQ ")=IT;~k&,

while the states belonging to the S= —,
' representations are

eg(k) = eT+ ak.

We can give more precise statements about the param-
eters using the microscopic model of the hopping, Eq.
(3). First, let us consider the hopping due to H;. Since
H; is a scalar operator in the spin space, it will have

purely diagonal matrix elements: (T rrklH,
l
T o'k)

=28' 8 thocosk and (SoklH, lSo'k)=28 th, cosk
However, HJ is a vector operator in the Hilbert space
spanned by the S=1 spins, and we can use the Wigner-
Eckart theorem to get the following identities:
(T ok~HJlT ok)=4moJhz~cosk and (T $;klH&lT t;k)
=2 +2Jhz~cosk, furthermore (So;klHJlS o ';k) = 0. .

Similarly, (T+ $;klH~lS$;k) = —i2+2Jh~ sink and

(T 't;klHJlSt';k) =i2Jhz sink. The same arguments can be
applied for the matrix elements of HJ as well. Putting all
together, we get
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TABLE I. The coefficients of the VBS wave-function decompo-
sition

2.5

0
1

$1/2
0

v'2/7

Q3/7

Q7/20

Q6/20

$20/61
$21/61

1.5

0.5-

ak= 2(h, t+ hz~ J)cosk+ J' g, -0.5

bk= 2(h~~t 2h—J~J)cosk —2J'g, -1.5

ck= 2 +3h~ Jsink,

dI, =2h, tcosk, (10)

-2

-2.5
0 m/2

k

3m'4

where the coefficients h~, h10, h, , hJ, and g depend on
the wave functions ISL) and ITt) and their size dependence
is governed by the (.

Here we will calculate these coefficients for the VBS
model and the Heisenberg model.

VBS model: For the VBS model the task is essentially
simplified due to the knowledge of how to construct the
ground-state wave function. Actually, for our purposes, the
following decomposition of the four lowest-lying wave func-
tions turns out to be useful:

FIG. 3. Dispersion relation for different values of J/t and
J' =J,=O. The dashed line is e&(k), the lower solid line is for
eD(k) and the upper for eD(k). Energy is measured from
~S=~T.

h~= pL
—2ut,

hJ =pt —nL,Q 2 2

I T~) u~l T~ i0) n—~l T~ i-+) —p~l~-~ i+&--
IT~) u~lT~ i ) u-~IT~ i+) —p-~l~~ i0-&--

I T~& = u~l T~ i & u~l T~-i—0)-P~l~~-i—-
and similarly

hJ =2nt /Q3,

g =2(uL~+ pL, )

furthermore as= —2J,/3 and eT=(34—80uL)Ji/9, where
the energy is measured from e T(J, = 0) = as(J i = 0). Let us
comment here that h, = 1 means that no walls were created
during the motion for that special process.

For infinitely large system and Ji =0 the dispersion rela-
tion Eq. (9) is simplified to

IT+&= u+IOT& i&+ u~l+—T&-,& p~l+~~ i), --
IT+) = u~l Tx-, )+n~l+-T+-, &-p~IO~~ i&,

—

I T~) = u~l T~ i&+ n—~l»~-i& -p~l ~~ i&----
s~) = v'1/3(l —T~, ) —IOT„',)+ I+ T„-,)),

where the coefficients n~ and P~ are given in Table I. It is
easy to get this decomposition by inspection. We believe that
it is trivial to get this result from the transfer-matrix repre-
sentation of the VBS wave function. The coefficients exhibit
the following remarkable properties: 2n&+ p&=1, and it
means that in this decomposition is complete in the Hilbert
space spanned by the four VBS wave functions. Further-
more, n~= (2+ 3n~, ) ', which allows us to calculate
the coefficients recursively.

With the help of the wave-function decomposition pre-
sented above, it is straightforward to get the parameters for
the hopping matrix elements:

2 4 4
e (k) =—t cosk ——J' ~ —$3J sin k+ (t cosk+ J'),D 3 3

2 4
e (k) = ——t cosk+ —J'.0 (12)

We show some examples of the dispersion relation in Fig. 3.
An interesting feature of the dispersion relation is that for
large values of J the minimum moves away from k= m

(when t)0) or k = 0 (if t(0). It means that the holes will be
described by a two-band model, which can have interesting
features.

Heisenberg mode/: We also calculated the hopping matrix
elements in Eq. (10) for small clusters of up to 15 sites for
the more realistic Heisenberg model, where P=O. In that
case the correlation length is comparable to the cluster size
and the size dependence of the matrix elements is large. We
have plotted the different matrix element on Fig. 4. Although
the size is not large enough to get good values for L~~
limit, we can conclude that h~ = —0.28~ 0.01,
hJ~=O+0. 005, h, =0.81+0.01, and hJ =0.55+0.01. Fur-
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0.6

0.4-

0.2-

Now, let us turn to the question of what happens if there
are more than one 5=-,' impurities? We can follow the idea
that for small values of the t and J, the states above the gap
are not excited and it is enough to consider the four low-
lying states of the open chain for the wave function of the
S=1 sequence in the wave functions. For example, a typical
state is

-0.2

-0.6-
-0.8 I

10
L

I

12
i

14

FIG. 4. The matrix elements h for the Heisenberg model: h,
(triangles), hJ (diamonds), hz~ (squares), and h~~ (hexagons) from

the top to the bottom.

thermore, from Ref. 5 we know that g = n and

e& —sz=u J& for J&&&J, where u=1.0640. We find these
matrix elements to be =20% less then those of the VBS
Hamiltonian.

A few words about the validity of the approach presented
above. During the motion the spin —,

' object can destroy
the hidden antiferromagnetic order' by creating walls. Tak-
ing this into account, it would give us corrections of the

order t /J and J /J to the dispersion relation. Also with the
increasing amplitude of the hopping, the upper bands will
merge with the continuum of the states above the gap. On the
other hand, the numerical calculation on small clusters shows
that the qualitative features of the lowest band remain even
when the hopping amplitudes are comparable with the mag-
nitude of the Haldane gap.

We can think of this wave function as a variational ansatz.
Then, the interaction between the S= 2 objects in this wave
function comes from: (i) the hopping matrix elements, which
depend strongly on the size of the open chains, i.e., on the
distance of the nearest holes; (ii) the energy splitting of the
singlet and triplet states of the finite chains between the
holes. The interaction due to (i) is proportional to the hop-

ping amplitudes t and J itself, while the strength of (ii) is
determined by the J of the host system. These effects depend
very much on the correlation length of the 5=1 system, and
they are the smallest for the VBS model. Actually in that
case the energy splitting is zero and the interaction is due to
(i) only. These interactions can in principle result in a bound
state, unless the kinetic energy is large enough. Despite the
strong constraints involved in construction of the variational
wave function Eq. (13), it has still a substantial freedom and
the properties of the system with more impurities remains to
be solved.

As far as the experiments done on Y2 Ca BaNi05 are
concerned, we have shown that there are states with S larger
than the 5=

2 of the impurity in the Haldane gap. Unfortu-
nately, the parameter range for the Y2 Ca BaNi05 based on
simple electronic model seems to indicate that the hopping
amplitudes are comparable with the interaction between the
5=1 spins, where our approach is valid only qualitatively.
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