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c-axis normal conductivity of YBa2Cu3O, as a function of x
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A theory is presented of the static c-axis conductivity of YBa2Cu307 z in the normal state with varying
oxygen concentration. The basis of the theory is an assumption that the hopping of electrons between the

Cu02 planes is due to resonant tunneling through localized centers between the planes. Comparison with recent
systematic determinations of the temperature-dependent conductivity at different oxygen concentrations shows
reasonable agreement.

The mechanism of conductivity, and hence superconduc-
tivity along the c axis in high-temperature superconductors
(HTSC) was always somewhat mysterious. The long period
in this direction means a large separation between Cu02
single, double, or triple layers, and in absence of the CuO
chains, which exist only in YBa2Cu307 and YBa2Cu408
(YBCO), the hopping between the CuOz layers should be
negligible. Attempts to explain the conductivity along the c
axis in the absence of chains led to many controversial as-
sumptions. One of them was the universal existence of "nor-
mal metal layers" (see, e.g. , Refs. I—3); this hypothesis was
not confirmed by angle-resolved photoemission experiments
in BizSrzCaCuzOs (BiSCCO), which showed that there are
no other Fermi surfaces, except that of CuOz planes (see Ref.
4). The other one was the RVB mechanism, associated with
the existence of "spinons" and "holons" ' (or, for supercon-
ductivity, "pair tunneling" ); however, in the presence of
chains the angle-resolved photoemission spectroscopy
(ARPES) experiments demonstrated a definite hybridization
in the one-electron spectra of chains and planes, and this
ruled out completely such a mechanism. There exist several
attempts to connect the c-axis conductivity with "off-
diagonal disorder, "i.e., some sort of scattering by impurities,
lying between planes (see Ref. 8). It is, however, difficult to
understand the mechanism of such an enhancement unless
some further assumptions are made, and this can alter sub-
stantially the picture.

At the same time there exists a very good check,
namely, the recently performed systematic experimental
determination of the temperature-dependent conductivity
in YBa2Cu30 with increasing x by Boyd Veal, which show
a crossover between "insulating" and "metallic" types of
behavior as the chains are gradually formed. There exists
another example of such a crossover, namely, the formation

of impurity bands in semiconductors. It is well known that
the disappearance of oxygen from the chains in YBCO hap-
pens randomly; this can be the basis of the similarity of these
two cases.

On the other hand, in BiSCCO, as well as in tallium and
mercury based superconductors, there is nothing like the
CuO chains in YBCO, and hence there has to exist another
mechanism for doping the Cu02 planes with holes. It is gen-
erally believed that this doping is achieved by some sort of
localized centers appearing as a result of intrinsic disorder in
these substances. On the whole, the situation is very reminis-
cent of doped semiconductors.

In this paper we will consider a model where the hopping
between the adjacent Cu02 planes is achieved by resonant
tunneling. The idea of resonant tunneling through localized
states inside the barrier was proposed long ago by Lifshitz
and Kirpichenkov. ' They showed that in cases where such
centers form a "resonant-percolational" path, the transpar-
ency along the path is of the order of unity. In the case where
the path is short, as is most appropriate for the present case,
it can contain only one resonant center, which must be lo-
cated exactly in the middle of the barrier. The energy of the
electron has to be equal to the energy of such a localized
state. We will assume that these localized centers are located
randomly along the median plane with a given concentration
and some distribution of energies. The positions of these cen-
ters in different median planes (we consider a model with
one CuOz plane per period) are assumed to be uncorrelated.
The planes Cu02 are metallic with some scattering of elec-
trons from other agents (e.g. , defects or other electrons be-
longing to the same plane) which are uncorrelated in differ-
ent planes and are much more numerous than the resonant
centers.

The Hamiltonian of the model is

e ) ( eH= g P„(p)gf„(p)d p+U„+tg P„+&(pj)t/i„(p&)exp i —A,d + f„(p&)t/i„+t(pj)exp —i —/I d, (1)
n

where the erst term is the kinetic energy, the second corresponds to scattering within the plane leading to a finite lifetime, and
the third, the resonant tunneling between the CuOz planes. Here t/l„refers to the plane n, P means the part of the P operator
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which corresponds to the energy of the resonant impurity E, ; pj mean the planar coordinates of resonant impurities between
the planes. The electric field along the c axis is represented by the vector potential A, , d is the period along z, and we assume
that A, varies substantially at much larger distances than d.

In order to calculate the current we first define the contribution to the thermodynamic potential 0 having the second order
in A, and lowest in t. Since we have to take averages over electronic states, the correction in the first approximation is given
by (see Ref. 11)

T (etd~' Ip
p' r +)G + (p' p r —'r)[A.(r)A,(r )—2A.'(r) —2A,'(r )] (2)

0 Jo n

First we perform the summation over j,j . Every impurity has its location and its energy level E, (the energies are taken with
respect to the chemical potential). We will assume that the resonant impurities are located randomly in the median plane
between two adjacent Cu02 layers with some average concentration n, , and the energy levels have a constant density within
a stripe (E e,E+ e)—. Resonant amplitudes involving different centers with the same energy are coherent. This is why the sum
over impurity locations is performed in the amplitude (sum over j,j ). The tunneling through centers with different energies
is incoherent. According to what was said, the sum over resonant impurities is transformed:

n, d p, .J J

We have to take into account that the energies of both states j and j' must be equal.
From Eq. (2) we obtain the "thermodynamic" current

4 ('/3
= —d(etn ) dr' d PG„(p, r r')G„+i( ——p, r' —r)[A~(r') —A~(r)].

30

Here in the G functions the in-plane scattering is incorporated. According to our assumptions, this scattering is uncorrelated at
different planes. Therefore, both functions are equal and depend only on coordinate differences. Passing to the Fourier
representation in ~ and p, we obtain

r

j,(trip)= —d(etn, ) Tg
~

d k[G„(k,i' +itPp)G„+, (k, iPi ) —G„(k,ice )G„+,(k,i' )]A,(itPp)
C m

Now we perform two operations. First we find the analytical continuation to real frequencies. Then we pass from the k
integration to the averaging over energies:

1 (8+ a

d k~d(v, /2) dE, ,
JE—e

where v, is the three-dimensional electron density of states, including spins (i.e., the ZD density times 1/d). For an isotropic
model v, =m/(rrd) and can be considered independent on energy. We obtain

2 f oo (E+g
j,(pip) = —(etnjd) v, dt0,

(apl
dEJ. tanh~ ImGz(co, E,)G~(co+ cup, E,)

( ZT)

( CO+ COO (cpi
+tanh Gz(cu, EJ)ImGg(pi+top, E&) —tanh ImGg(pi E,) A (ccip).2T ~ZT&

(6)

The coefficient, connecting j,(p~p) and A, (cop) (we denote it by —Q), vanishes at cop=0.
The static conductivity is defined by the relation

. ( &Q(~p) ~

o = —ic~
Bc@0 )

From this we obtain
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(.E+~
o.= 2(etn, d) p, dc@

2m JE

~ co~
dE; cosh [ ImG~(ni, E;)]

] joo

=2(etnjd) p, dco2' J

fE+a 1 ( co j 1/2g

12T (2Tt (co —Ej) +(1/2r)

2

(8)

1 i U i cosh(E/T)+cosh(e/T)
4 j, tn, d) sinh(e/T)

(10)

where 1/7 is the scattering probability entering the in-plane
resistivity. The linear temperature dependence of this resis-
tivity has still no final explanation. We will simply assume
that 1/~= nT, and u(&1, in order to keep the validity of the
Fermi liquid model.

The integr and in Eq. (8) is a product of two
8'-function-like factors. Since I/2r we assume to be much
less than T, the second factor we can replace by
7r~B(ro —E,), and after that we obtain

tE el —IE+e j

rr, =2(etnjd) v, 7. nF nF—
T J.

where nF is the Fermi function. Comparing this expression
with the in-plane conductivity o.,b=(1/2)(ev) v, 7, where U

is the Fermi velocity, we obtain for the resistivity ratio

p, 1( U ~' ~E e~ (E+—ej
nF —nF

p, b 4 j, tn, d) ( T
g ( T )

ken chains, hence in these limits our theory does not reflect
all the details of the plain-chain relations. The fitting proce-
dure is somewhat unstable, since slightly different sets of
constants lead to the same quality of agreement. Fortunately
the scatter is not too large, and therefore, some conclusions
can be drawn. The constant To remains essentially indepen-
dent on oxygen concentration (To=1250 K, or E=0.11 eV)
(it has to be remembered that the energy E is actually the
difference E —p,). The constant T, varies nonmonotonical
being larger at large and small oxygen concentrations
(=1050 K) and smaller in between (=700—800 K). If this
variation reflecting the scatter of resonant levels is real, it can
be explained by the idea that at small oxygen concentrations
the total number of these localized states is small, and hence
the fluctuations are large, whereas at large concentration the
wave functions overlap, and a band of finite width is formed.

On the basis of these data the condition (11) can be
checked. We find that in all cases, if the constant a (we
remind that 7 ' = nT) is less than unity, the condition (11) is
fulfilled. We have to assume a&&1 not only for this reason
but also because otherwise the Fermi liquid concept fails.

Contrary to To and T&, the constant
The validity of this formula is based on the approximation of
the second factor in the integrand of Eq. (8) by a 6' function.
In the case of E)~ T this can fail. The necessary condition is
(we substituted I/r= aT)

A = (U/tnjd) (13)

p, cosh(To /T) + cosh(T, /T)
=A

Pab sinh(T, /T)

by choosing the optimal values of the constants A, To, and
T& . The fit is good for moderate oxygen concentrations, and
somewhat worse in both limits: metallic and completely bro-

200
A(x)

(T/E) exp(E/T)(&T/(ea ).
We will assume that this is always fulfilled.

Comparison with experimental data was performed on
the basis of Eq. (10) written in the form

has a systematic dependence on oxygen concentration. If we
try to fit it by the formula

A=a(x —b)™, (14)

a = 3.94, b =. 6.35, I= 1.46. (15)

where x is the amount of oxygen atoms per unit cell, we get
the optimal values of the constants

1 50---

1 00---

6.4 6.5

X
I I I

I I I

6.6 6.7 6.8 6.9 7

The fit is presented in Fig. 1. It is surprisingly good, and the
values (15) are very reasonable. The concentration x=6.35
corresponds to the metal-insulator transition. The Fermi ve-
locity of the electrons can be expected to grow with x, and

n, is most likely approximately proportional to (x —6.35).
Therefore the exponent m must be somewhat less than 2, and
it is really in this range.

This shows that the suggested model is reasonable, and
being rather simple, it can nevertheless provide an explana-
tion of experimental d.ata.

FIG. 1. Fit of the prefactor A in Eq. (12) obtained from experi-
mental data of Ref. 9 with Eq. (14), describing its dependence on
oxygen concentration.
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