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In this paper we present numerical simulations for the dynamics of a vortex pair described by the two-
dimensional nonlinear Schrodinger equation. The simulations reveal significant nonvanishing fluctuations
around the classical velocities of vortices in an ideal incompressible fluid due to excitation of the acoustic (or
sound) field. The reason for the fluctuations is the potentiality of the superflow, which introduces significant
compressibility to the superfluid. We discuss some implications of this observation, especially on existing
discrepancies between theories of superfluid turbulence. We indicate a possible mechanism for the sportaneous
nucleation of a small vortex ring in the three-dimensional nonlinear Schrodinger equation.

The nonlinear Schrodinger equation (NLSE) is a popular
qualitative model for superfluidity, nonlinear optics, pattern
formation, and more. The vortices with nonzero topological
charge play an important role in the dynamics. For example
the turbulent state is described as a vortex tangle.’ Using the
Madelung transformation, the NLSE may be transformed
into the well known Euler equation for inviscid fluids having
the same continuity equation. This analogy has led some
researchers to describe the dynamics of the vortices in NLSE
exactly in the same way as the dynamics of vortex lines in
classical ideal fluids, with the only constraint that the vortic-
ity in the former case is quantized. In the turbulent state for
example, using this analogy, one describes the interaction
between vortices in a classical manner. In this paper we show
that this description suffers from serious deficiencies, and try
to clarify an existing discrepancy in the theory of superfluid
turbulence.

The corresponding NLSE reads as follows:

—ihd,p=(H*2M)Ay+g(1—|y]*)y, (1)

where A is the Laplacian operator, g is the strength of the
short-range interparticle potential, % is Planck’s constant, and
M is the *H, atom mass. In normalized units we obtain

—idp=Ay+(1— [y y, 2

where we rescaled time as t—tg/#f, space as r—r/a, and
a=%h/\2Mg is the so-called healing length which for *H,
superfluid in the low-temperature limit is of the order of a
few A. The Madelung transformation for this equation is
simply ¢y=Re'S where R and S are real functions. This gives
the following Euler equation:?

D,V=VP, 3)

where D, is the material derivative (D,=d,+V-V), the ve-
locity V is defined as V=2VS, and the pressure P is
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P=—AR/R+R?*-1, 4)

where the first term in the right-hand side of this equation is
the so-called “quantum pressure.”

In the limit g—0 of Eq. (1) we obtain the free Schro-
dinger equation which in its hydrodynamic form is the same,
except the pressure which contains only the quantum pres-
sure term. In this case one can calculate the vortex dynamics
using the exact propagator. The resulting dynamics in most
cases is not at all compatible with the incompressible vortex
line dynamics. In the Euler equation the incompressibility
approximation is reliable for velocities much smaller than
the sound velocity. In our case normalized sound velocity is
unity (dimensionally it goes like \/§), and thus this approxi-
mation is more credible for intervortex distances much larger
than a. In the opposite case, g=0, the sound velocity van-
ishes, and clearly the incompressible regime does not exist at
all. Therefore one could expect the analogy with classical
incompressible thin vortex tubes to hold for velocities much
smaller than the sound velocity, or alternatively, when the
quantum term is not the dominant one in the above defined
pressure P. A notorious example to an incompressible
simple dynamics is an antiparallel vortex pair at a distance
d>1, which for incompressible classical Eulerian fluid drifts
with velocity of order 2/d+O(d~?) in the direction normal
to the line connecting the cores of the vortices.

In order to test the validity of the incompressibility ap-
proximation, we have performed numerical simulations of
the vortex pair dynamics in the two-dimensional NLSE. We
used a pseudospectral implicit split-step method based on
fast Fourier transform (FFT). This method is conservative
and conserves also some additional integrals of NLSE.> We
used typically 256X256 Fourier modes in a domain of
200X 200 units; the time step was chosen to be 0.05. The
results were verified for different resolutions. The boundary
conditions were periodic in both the x direction and the y
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direction, which are equivalent to a periodic array of vortices
in both directions. The stability of such an array in the Eu-
lerian context is discussed in the classical Lamb’s book.*
Although symmetric double row vortex array, according to
the Ref. 4, is known to be unstable in an infinity system, our
periodic array is stable because the periodic boundary con-
ditions, which we impose in our simulations, admit only
stable wave vectors (¢=0, 27 in Lamb’s notation).

The method of finding the center of the vortices is com-
prised of two stages. A linear approximation is applied to
find a rough position of the vortex core, and then a Newton-
Raphson method for finding the global zero® is used to refine
the position found in the first stage.

It is believed that an exact two-vortex solution cannot be
written analytically. Moreover, there is no simple method to
generate it numerically from specific initial conditions. For
initial conditions which are close enough to two single sta-
tionary vortices @y such as ¢=uyo(r—d/2)yYo(r+d/2),
Fetter® obtained analytically for the leading order the classi-
cal 2/d result. This result later was reproduced by other re-
searchers (see, e.g., Ref. 7). It was shown that 2/d law is
consistent from the point of view of matching the far field
asymptotics with the perturbed core solution. A more suitable
initial condition to our investigation than that of Fetter® in
the sense that it is closer to the classical dynamics may be
obtained by solving numerically the real dissipative
Ginzburg-Landau (GL) equation [no —i in the left-hand side
in Eq. (2)].8 This equation has the same stationary behavior
as the NLSE. Although the GL has no stationary solution
representing a vortex pair, we expect that for sufficiently
long time evolution of a well separated pair of the GL equa-
tion, the obtained solution is sufficiently close to the vortex
pair solution of the NLSE case.

This argument led us to use initial conditions as follows:
we take an initial generic function ¢ having two single zeros
of opposite charge in the domain of integration, then iterate it
with the GL equation until it converges to a regularized
enough function. This function is used as the initial condition
for the NLS equation. In Fig. 1 we present typical results for
the dynamics of a vortex pair. One can see that indeed the
mean velocity is 2/d in the x direction [see Fig. 1(a)] and
zero in the y direction [Fig. 1(b)] as one would expect, but in
both directions there are significant fluctuations around this
mean value. These fluctuations are caused by scattering of
sound waves on the vortices. Moreover, those fluctuations do
not decay with time which is an obvious result of the Hamil-
tonian structure of the NLSE. In order to evaluate the effect
of the fluctuations as a function of the box size L, we per-
formed numerical experiments for different values of the box
size L and the intervortex distance d.

Our results can be characterized by defining the normal-
ized standard deviation of the wvelocity w; namely,
wi=V(v7)—(v;)*/{v,) where v; is the vortex core velocity
in the direction x or y (note that we normalize by the veloc-
ity in the x direction only, because this is the only typical
velocity of the system, and (v,)=0).

The relative average fluctuations w, against the inverse
box length is shown in Figs. 2 and 3. In Fig. 2 we keep
constant the intervortex distance d =40, and in Fig. 3 the
ratio L/d is kept constant and equal to 10.
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FIG. 1. Normalized components of the velocity of a vortex pair.
d=40, L=200. Here v,=2/d is the mean classical drift velocity in
x direction.

From Fig. 2 one clearly sees that the standard deviation is
of the same order of magnitude as the mean velocity for
small enough box length L. This means that even for the
incompressible regime there are large velocity fluctuations
around the mean value 2/d. In this regime the magnitude of
the fluctuations is basically box independent, but the fre-
quency decreases with L. This frequency dependence on L is
a strong evidence to our interpretation, that those fluctuations
are caused by sound waves which reflected back from the
boundaries. The time of flow to the boundaries and back is
proportional to L with a sound velocity 1. This was con-
cluded from the analysis of the full field pattern (see, e.g.,
Ref. 9).

The ratio of fluctuations to mean velocity would be even
worse when any other initial condition is taken, as explained
before. We checked this statement by simulating the same
scenarios as in Fig. 1, but with a less regularized initial con-
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FIG. 2. The normalized standard deviation versus 1/L for fixed
d=40.
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ditions. We found that for a small enough number of GL
steps we can get much larger w; of up to 10 or more. Without
any regularization we got a very erratic dynamics.

For box lengths larger than 250 we see from Fig. 2 a
significant decrease in these fluctuations. This figure could
bring one to argue that in real systems L is much higher than
250 healing lengths a (a typical value of L/a is about
10%). This fact means that for real boxes there are no signifi-
cant fluctuations around the incompressible velocity. This ar-
gument seems reasonable for an isolated vortex pair, but for
typical cases (especially in the turbulent state) there are
many other vortices around. For those cases one can think of
other vortices as representing effective boundaries which in-
teract with this specific pair by scattering of waves. In those
cases the effective boxes are not so big, and could be con-
sidered to have the same order of magnitude as d. To check
the implications of such a picture we performed the second
calculation, in which we varied L and kept L/d=10. As one
can see in Fig. 3 the fluctuations increase with L. This means
that the mean velocity decreases as 1/d, but the fluctuations
stay with the same order of magnitude, so the normalized
standard deviation increases. We conclude that the incom-
pressibility approximation is not appropriate for dense
enough arrangement of the vortices even for very large sys-
tems.

It is notable that these dynamical fluctuations are not
caused by temperature but originated by the internal dynam-
ics of superfluid. The analogy with the Euler equation has
broken down because there is another condition, that the ve-
locity field is a potential flow (it is a gradient of the scalar
function S).1° We see that even for low velocities the dynam-
ics of vortices depends on the entire field and cannot be
written in a local universal form as it is usually done. In an
infinite system these fluctuations are not relevant because the
waves are radiated away and play the role of an “effective
dissipation.” Certainly, the waves propagate due to the com-
pressibility of the NLSE. The potentiality of the velocity
field in the quantum case presumes significant compressibil-
ity, because the vortices are not just thin vortex tubes as in
the classical Euler equation, but they are topological defects
in the complex scalar field . For these defects the order
parameter (the superfluid density) vanishes at their axis. This
means that the density has large gradients, breaking the com-
pressibility condition.

To summarize our main observations from the numerical
experiments, we get a persistent nontrivial dynamics which
obeys the 2/d law only in a very restricted statistical sense.
Moreover, the vortices do not play a crucial role in the dy-
namics, because an infinite (or very high) number of degrees
of freedom, related to the acoustic field, are effectively ex-
cited. The same consideration holds also for arrays of vorti-
ces as one can conclude from our Figs. 2 and 3.

This observation has many possible physical implications.
The first concerns the widely used method to describe a su-
perfluid with vortex Hamiltonian dynamics (see, e.g., Ref.
11). This model assumes the vortices to interact as Coulomb
particles, and the superfluid dynamics depends on a discrete
number of degrees of freedom (effectivé many-body dynam-
ics). This is true only on the average in the quantum case, as
shown before, and we think that one has to use a more proper
(but much more difficult) way to describe superfluid dynam-
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ics in the full field theory. In contrast, for dissipative sys-
tems, the dynamics is well presented by a few localized
structures (vortices) because the radiation dies out exponen-
tially fast (see, e.g., Ref. 12).

Now we discuss other implications of these results. Two
general theoretical approaches to superfluid turbulence are
the scaling argument due to Hall and Vinen,'® and the nu-
merical method of Schwarz.!* In both cases the parameter
which is used to characterize the turbulent state is the total
length of vortex lines per unit volume /. The scaling argu-
ment describes the turbulent state as a balance between gen-
eration and decay terms. In this argument, as Vinen himself
pointed out, there is a problem of initiation of turbulence,
because if /=0 there is no way to get a finite generation rate.
This is due to the form of the generation term which is pro-
portional to /*2. The only mechanism he could think of is
thermal generation of vortex rings which will expand in
time. But the radius of such a vortex ring has to be of order
10™* cm, which is unreasonably large. He concludes that this
is a “‘serious fundamental difficulty.”

According to our observations, if there are significant ve-
locity fluctuations (sound waves), then it might occur that
even smaller rings will expand because of a local instability
(it is commonly believed that the two-dimensional NLSE is
not integrable in contrast to the one-dimensional one). In the
real turbulent state we would expect that thermal fluctuations
would create “‘seed” vortices which are much less “optimal”
than those we used in our calculations, so we expect the
fluctuations to be much larger than those we have presented.
In this sense we expect that NLSE with “GL initial condi-
tions” as we used represents a lower bound on more realistic
cases as stated before. Those fluctuations might be the source
of the phenomenological term presented by Vinen.

Here we discuss another mechanism that can be respon-
sible for initiation of a turbulent state by the dynamical cre-
ation of vortex rings in the context of NLSE. One has to
rescale the dynamic variables in Eq. (2) in the following
manner: x—e€x, t—et, and S—€eS. This specific type of
the scaling describes a slow dynamics of the sound waves
with a very large period. Then one gets the Euler Eq. (3) with
the pressure as in Eq. (4), and no quantum term. This form of
the equation is equivalent to the classical Euler equation with
the specific equation of the state. One easily sees that the
pressure ~ p*[ after multiplying the Eq. (3) by p=R? in both
sides]. For such an equation it is known that in 3d there
occurs a finite time singularity in V=VS (Ref. 15) for a
generic class of initial conditions. This phenomenon occurs
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also for the potential flow which is our case.'® A singularity
in V means divergence of the gradient of the phase S. This
mean a spontaneous creation of a multivalueness of the order
parameter. The phenomenon can be presumably treated as a
creation of the vortex ring for which the velocity in the core
diverges. If our interpretation to this phenomena is right, one
can expect a creation of small vortex rings. We point out here
that this divergence of the phase has nothing to do with the
well-known finite time singularities in the focusing case of
the NLSE (opposite sign of the interaction g), which is the
blowup of the density (R). This argument involves only the
first order in € equation, but it is nevertheless a very strong
indication of spontaneous nucleation of small vortex rings in
three-dimensional NLSE. This mechanism may be the source
to the initiation term of Vinen described before. Of course,
this hypothesis needs detailed numerical verification.

Now we consider Schwarz’s approach. He constructs a
model of vortex dynamics consisting of two components.
The first is the dynamics of the vortex due to the superfluid
field effects which he treats with the self-induction approxi-
mation, and the second is due to the mutual friction with the
normal field. Nonlocal effects are treated through the ansatz
that when vortices are close enough they reconnect. He ob-
tains the same scaling relations as the above mentioned ap-
proach. He obtained also a total vortex length per unit vol-
ume / which is compatible with the experimental values. In
1987 Buttke'” raised a question about the validity of the
numerical scheme that Schwarz used, and it was argued, and
to the best of our knowledge proved, that careful enough
calculations with his method gives another result for / which
is not compatible with the above mentioned experimental
results. Buttke concludes that the self-induction approxima-
tion is not valid for quantum vortex dynamics, and a more
reliable model to describe superfluid turbulence ‘“‘has to in-
clude more of the nonlocal character of Euler equation than
self-induction does.” Schwarz’s basic argument as we under-
stand it is that for thin enough vortices in the Euler equation
this approximation is shown to be valid.

We think that Buttke’s numerical argument was correct
and Schwarz’s answer also is correct for the Euler classical
case. The problem lies in the fact that we deal with quantum
vortices and not only very thin ones. For this reason, as we
pointed out before, the analogy between superfluid vortex
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dynamics and classical (even thin) vortex tubes breaks down.
This is the reason why one has to consider the nonlocal char-
acter of the superfluid field even for thin vortices where the
regular Euler dynamics is of local character. For the same
reason it might occur that vortex rings can expand even be-
low the classical critical radius as we argued before.

In the end we consider one more general question that
could be raised to oppose the significance of our results. In a
real case where there is dissipation with the normal compo-
nent of the helium, these fluctuations would be depressed
much faster than the pair annihilates, and the mean dynamics
seems to be correct. This is the case if the friction is de-
scribed by small real addition € to the imaginary unit i be-
fore the time derivative in the NLSE. Even in this case the
decay of fluctuations depends on the ratio of 1/e and L,
which determines the time scale of dissipation versus the
time scale of reflection of waves from the boundaries back to
the vortex pair. However, in the helium context for low
enough temperature this is not the form of the interactions
with the normal. In the turbulent state which we discussed in
this paper there is a constant pumping of the superfluid by
the normal. For example, in Schwarz calculations this pump-
ing is done by keeping the velocity of the normal constant. In
that case, there is persistent creation of waves which keeps
our argument relevant even for very long time scales.

To summarize, we have shown that quantum vortices be-
have differently from classical ones even for low velocities.
We observed that the dynamics is much less local for the
vortices in NLSE due to compressibility effects, and dis-
cussed possible implications on superfluid dynamics and es-
pecially on the initialization and characterization of the ho-
mogeneous turbulent state. We pointed out that the above
mentioned nonlocality gives a clue that the basic building
block for the theory of superfluid turbulence may not be the
quantum vortices “many body’ dynamics, which cannot be
separated from the whole field dynamics, but one must treat
the field itself as the basic dynamical variable.
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