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We report an interesting effect in organic conductors and superconductors: the inducement and/or enhance-
ment of superconductivity by uniaxial compressive stress. Uniaxial stress induces superconductivity in a
density-wave material and increases the transition temperature of a superconductor by a factor of 3. Analysis
of the Shubnikov —de Haas effect shows an expansion of the in-plane unit cell with stress and an increase in

effective mass when superconductivity is induced.

Superconductivity in organic conductors has been an ac-
tive subject since the conjecture of Little concerning pairing
mechanisms that might occur in highly anisotropic, linear
chain organic materials. Since Jerome and co-workers dis-
covered superconductivity in (TMTSF)zPF6 under 6 kbar of
hydrostatic pressure, the quest for higher T, has become a
driving force in organic conductor research. The charge
transfer complexes such as (BEDT-'1 1'F)zX involve transfer
of one electron from a pair of large BEDT-'I"I'F organic do-
nor molecules to the anion X. It is empirically observed that
in those materials where superconductivity is present, the
superconducting transition T, scales with effective unit cell
volume and with anion length. ' Hence T, may increase
until instabilities set in and the material becomes insulating
or impossible to synthesize under ambient conditions. At
present, the highest transition temperature in charge transfer
complexes series is tc-(BEDT- '1 1'F)zCu[N(CN)z]Cl, with a
transition temperature of over 12 K. Here a small pressure
of G.3 kbar is needed to stabilize the superconducting state
over the insulating state.

The nature of superconductivity in such materials
as tc-(BEDT-1 1'F)zCu(NCS)z (Ref. 6) and n-(BEDT-
'11'F)zNH4Hg(SCN)4 (Ref. 7) is layered, and the critical
fields and vortex dynamics are very anisotropic. When
hydrostatic pressure is applied to these materials, T,
decreases very rapidly. For a -(BEDT-'1 1'F)zCu(NCS) z

(T,=10.4 K), dT, /dP= —3 K/kbar, ' and in ct-(BEDT-

'1 1'F)zNH4Hg(SCN)4 (T,=1 K) dT, /dP= —0.25 K/
kbar. In both cases the effective mass determined from
the Shubnikov —de Haas (SdH) effect also has a large nega-
tive dependence on pressure. Hence effective mass enhance-
rnent correlates with the existence and magnitude of T, .

The purpose of the uniaxial stress study reported in this
paper was to examine the role of anisotropy in the density-
wave state of the material n-(BEDT-TTF)zKHg(SCN)4 and
the superconducting state of the isostructural material
n-(BEDT-TTF)zNH4Hg(SCN)4. These two compounds be-
long to the n-(BEDT-'1 1'F)zMHg(SCN)4 (M=K, Tl, Rb,
NH4) isostructural family of charge transfer salts which has
very thick (=7 A ) anion layers separating along the b axis
the two-dimensional chevronlike arrangement of the donor
molecule s. The calculated Fermi surfaces for all four
compounds are identical and consist of slightly warped
cylinders at the corners of the Brillouin zone and two one-
dimensional sheets running along the k, direction. There
is no clear correlation in these salts between the M site in the
anion complex, the unit cell volume, and the density-
wave or superconducting ground state. Hence the fact that
only ct-(BEDT-'1 1'F)zNH4Hg(SCN)4 is a superconductor, and
all others have density-wave ground states has remained a
curious fact. Our study shows that uniaxial stress induces
superconductivity in n-(BEDT-TTF)zKHg(SCN)4 and can
therefore unify the ground-state behavior of these salts.

The method used to apply stress to these fragile single
crystals has been previously described. The concept is to
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FIG. 3. Bottom graph: Resistance versus temperature of
both salts for various stress values. Filled symbols are for
n-(BEDT-TTF)zNH4Hg(SCN)~, right-hand resistance scale; open
symbols for n-(BEDT-TTF)2KHg(SCN)4, left-hand scale. Top
graph: Plot of T, versus the square root of the inverse fundamental

SdH frequency ($1/n~1/kF) for various samples. Slope of the
dashed line is 376 K T . Hydrostatic pressure data for
n-(BEDT-TTF)2NH4Hg(SCN)4 from Ref. 10.

temperature effect in n-(BEDT-'l l'F)2RbHg(SCN)4 and con-
cluded that this effect is more closely related to weak antilo-
calization, which has a very explicit magnetoresistance near
zero field. The weak antilocalization curves that fit the low-
temperature data well cannot be adjusted to fit the stress
induced effects observed in n-(BEDT-TTF)2KHg(SCN)4.
Rather, the resistance curves shown in Figs. 1 and 3 are
characteristic of type-II superconductor behavior, although
thermodynamic measurements are necessary to confirm the
bulk nature of superconductivity. In the case of
n-(BEDT-l I'F)2NH&Hg(SCN)4, the enhancement of the am-
bient pressure superconducting state is unambiguous (see
Fig. 4).

We may gauge the relation of T, to the in-plane lattice
expansion by plotting T, vs the root of the inverse SdH
frequency n which equals $2e/A c/k~ for the simple case of
a circular orbit [see Fig. 3 (top)]. Here we find that both
materials follow a systematic trend of increasing T, with real
space expansion in the a-c plane. This should be compared
to a similar trend in other organic superconductors involving
increasing unit cell dimensions.

The uniaxial stress dependence of the effective mass
(m *) provides crucial information about the supercon-
ductivity enhancing mechanism. We have applied the
Lifshitz-Kosevich formalism' to the temperature depen-
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FIG. 4. Temperature —magnetic field —b axis stress phase
diagrams: (a) n-(BEDT-TI'F)2KHg(SCN) 4. (b) n-(BEDT-
TTF)2NH4Hg(SCN)4. Different symbols (circles and squares)
denote data from different samples. The points (diamonds) that
mark the temperature-field density wave boundary in (a) are from
Ref. 12.

dence of the SdH oscillations to obtain the stress-dependent
effective mass. Here the background magnetoresis-
tance, which changes with stress and temperature, has
been taken into account in our determinations. For
n-(BEDT-TTF)zKHg(SCN)z there is a clear correlation
between m* and the appearance of superconductivity. The
effective mass increases from a zero stress
value of 1.4~0.1m0 to 1.7~0.1mo by 1.6 kbar, when super-
conductivity has set in. Further increase in stress does not
raise m further, although T, is rising. A similar situation is
observed in n-(BEDT-TTF)2NH4Hg(SCN)4, with m* re-
maining locked at 2.1~0.1mo throughout the stress range
investigated, even though T, increases threefold.

An increase of the density of states at the Fermi level
(on which both T, and m* depend) with stress is consistent
with a decrease in the conduction bandwidth (tb). In the
tight-binding model used for band structure calculations in
these salts, tb is proportional to the transfer integrals between
the BEDT-'l l'F molecules. Uniaxial compressive stress ap-
plied in the cross-planar direction would stretch the in-
plane dimensions (Poisson's effect), thereby lowering tb.
However, the rapid increase in m* when superconductivity
appears in n-(BEDT-'l l'F)2KHg(SCN)4 cannot be ascribed
to a band effect alone since the bare band mass is too small
to begin with [less than mo for zero stress (Ref. 4)] and it is
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simply inversely proportional to tb. The smooth decrease in
o., which in a somewhat indirect way is a measure of the
bandwidth, is proof that there is no sudden jump in tb for any
particular stress value.

The rapid increase in m* must therefore be accounted for
by many-body effects, which contribute to the effective mass
measured in the SdH effect. We know from the stress in-
duced slow oscillations in the magnetoresistance that the
nesting condition of the open orbit band is most likely af-
fected. Here small changes in lattice and band parameters
may play a stronger role due to the sensitivity of the nesting
condition to Fermi-surface topology. Hence stress must be
influencing a system very close to an instability. The fact that
the two isostructural materials studied have different ground
states under ambient conditions reAects how close the nest-
ing instability is. Since the nesting condition involves pairing
and electron-phonon and electron-electron interactions, this
may provide the connection between stress and superconduc-
tivity. The effect of stress in our experiment, which is to
effectively "pull apart" the in-plane unit cell, may explain
why hydrostatic pressure does not produce the same effects.
More work will be necessary to identify the mechanism
which enhances the superconducting ground state.

In conclusion, we have observed that uniaxial stress
applied along the least conducting direction of
n-(BEDT-'I IF)2MHg(SCN)4 organic conductors unifies
their ground-state behavior by greatly enhancing the ten-

dency for superconductivity. This is in contrast to the effects
of hydrostatic pressure on the same materials. Analysis of the
SdH effect shows that stress expands the in-plane unit cell
and increases the effective mass substantially prior to the
appearance of superconductivity. The enhancement of the su-
perconducting transition is consistent with the mass enhance-
ment and the increase of the density of states at the Fermi
level due to the decreasing bandwidth —but this alone cannot
account for the large changes observed in T, and m*. %'e
believe the most likely cause of the effect may be the influ-
ence of stress on the nesting condition which in turn is di-
rectly related to the pairing condition and electron interac-
tions. Susceptibility, heat-capacity, and angular-dependent
studies are needed to fully explore these new effects.
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