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Selection rules for oscillations of the giant magnetoresistance
with nonmagnetic spacer layer thickness
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Oscillations of the giant magnetoresistance (GMR) with nonmagnetic spacer layer thickness are predicted in
the current-perpendicular-to-plane (CPP) geometry. The methods of the quantum-well theory of the oscillatory
exchange coupling are applied to the Kubo formula to derive general selection rules for the GMR oscillation
periods. The selection rules are illustrated for single-orbital tight-binding and parabolic band models. They
predict that the CPP GMR oscillates not only with the expected Fermi-surface period but also with additional
periods determined by the potential steps between the magnetic and nonmagnetic layers.

Since the discovery of the giant magnetoresistance effect
(GMR) (Ref. 1) and oscillatory exchange coupling the trans-
port and magnetic properties of magnetic multilayers have
attracted much attention. To explain the oscillations in the
exchange coupling, Edwards and Mathon ' have proposed
that spin-dependent potentials in the ferromagnetic layers
create quantum-well states in the nonmagnetic spacer layer
sandwiched between the magnetic layers. As the thickness of
the spacer is varied, the passage of quantum-well states
across the Fermi surface (FS) causes oscillations in the ex-
change coupling, the oscillation periods being determined by
the spacer FS. The oscillatory exchange coupling is, there-
fore, inherently a quantum interference effect.

On the other hand, the conventional explanation of the
GMR effect is based on spin-dependent scattering of elec-
trons from magnetic impurities at the magnet/spacer inter-
faces. The spin-dependent scattering is usually treated within
the classical Boltzmann equation formalism and the scatter-
ing of electrons from quantum wells in the magnetic multi-
layers is considered to be unimportant. This conventional
point of view was challenged recently by Schep et al. who
showed that, at least in the current-perpendicular-to-plane
(CPP) geometry, a very large GMR can be obtained without
any impurity scattering. They applied the Landauer-Buttiker
scattering formalism to ballistic point contacts of Co/Cu
multilayers and found a CPP GMR of more than 120%. The
whole GMR effect in this regime is due to rejections of
electrons from quantum wells/barriers and, therefore, has the
same origin as the oscillatory exchange coupling.

The purpose of this contribution is to show that the GMR
mechanism proposed by Schep et al. leads necessarily to
oscillations of the CPP GMR with the spacer thickness. Ap-
plying the methods of the quantum-well theory of the oscil-
latory exchange coupling to the Kubo formula for the
conductivity, we derive general selection rules for the peri-
ods of oscillations of the GMR. The selection rules are illus-
trated for parabolic and single-orbital tight-binding bands.
The most surprising result we obtain is that the GMR in the
CPP geometry oscillates not only with the FS oscillation pe-
riod obtained for the exchange coupling but there are addi-
tional periods determined by the heights of the potential
steps between the magnetic and nonmagnetic layers. This is
in contrast to the results of Vedyaev et al. who obtained

quantum oscillations of GMR in the current-in-plane (CIP)
geometry but only with the FS period.

We consider a trilayer consisting of two magnetic layers
of M atomic planes each separated by a nonmagnetic spacer
layer of /t/ atomic planes. The trilager is sandwiched between
two semi-infinite ideal lead wires. Both the trilayer and lead
wires are described by a simple cubic single-orbital tight-
binding Hamiltonian with nearest-neighbor hopping t. We
take (001) orientation of the layers and measure all the en-
ergies in units of t. Following Schep et al. , we assume per-
fect interfaces and neglect the effect of impurities. It follows
that the wave vector Itl parallel to the layers remains a good
quantum number. The conductance I of the trilayer in its
ferromagnetic (FM) or antiferromagnetic (AF) configuration
is the sum of the conductances of the up- and down-spin
electrons. The CPP GMR is defined by GMR = (1"FtM

+I'FtM —21 ~~'")/21 At'Ft . For any particular configuration, the
CPP conductance of electrons of spin a. is given by the Kubo
formula

I =(2e /h)g [G G„+G,tGtto
—GntGot —GtoG, o],

where G=(1/2i)[G —G+], G, G+ are the advanced and
retarded Green's functions evaluated at the Fermi energy
EF, the indices 0, 1 label any two neighboring atomic planes
in the spacer, and the trace is over all P~ in the two-
dimensional Brillouin zone. The Green's functions are calcu-
lated assuming that the electrons are noninteracting in the
spacer and experience exchange-split one-electro@ potentials
in the ferromagnets. It is straightforward to generalize Eq.
(1) for the conductance to an arbitrary tight-binding Hamil-
tonian. However, we restrict our discussion here to a single-
orbital band because one can derive closed expressions for
all the Green's functions in Eq. (1) and oscillations of the
conductance can be discussed without resort to numerical
calculations.

To calculate the required matrix elements of G we pass an
imaginary cleavage plane between the atomic planes 0 and

1, which separates our infinite sample into two independent
semi-infinite systems. We refer to them as the left and right
overlayers on the ideal leads. It is easy to show using
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FIG. 1. Dependence of the CPP GMR on the

nonmagnetic spacer layer thickness. Tight-
binding model: (a) EF=0 8, 6. = 0.6; (b)
EF= 0.8,5 =0.3.
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Dyson's equation that Goo= (1 goog 11) goo G 11
=(1—goog„) g„, and Goi=Gio=gooG», where goo and

g» are the surface matrix elements of the Green's functions
for the isolated left and right overlayers. We shall further
require the matrix elements of the tight-binding Green's
function g'„of an isolated (001) slab of i atomic planes.
They can be obtained by inverting algebraically the i Xi ma-
trix (IE H), wher—e H is the slab Hamiltonian and I is a
unit matrix

( —1) "+'sin(mk~a) sin(n —i 1)k—i a

sin(k~a) sin(i+ 1)k~a

Here a is the lattice constant, m ~n = 1,2, . . . ,i, and

k~(E =EF,kII) is the wave vector normal to the layers at the
bulk spacer FS.

Suppose that there are i atomic planes of the spacer con-
tained in the left overlayer. We determine analytically the left
overlayer Green's function gpp by "grafting" an isolated slab
of i atomic planes of the spacer on the left ferromagnet. This
is achieved by restoring hopping between the slab and ferro-
magnet via the Dyson equation. Assuming that the surface
Green's function for the left gL ferromagnet is known, it is
easy to show that gpp is given by

goo=g +g i(1 gLg. ) gLgi .

Similarly, we obtain g» for the right overlayer. Substituting
now from Eqs. (2) and (3) in Eq. (1), we arrive at a remark-
ably simple expression for the conductance in terms of gL
and gg '.

4e sin (k~ a )Imgi mgR
I (kII)=

h
~

sin(N+ 1)k~ a —(gr. +g~) sin(l)/k~ a) +gl g~sin(N —1)k~ a
~

C7 0 0 0 (4)

In fact, the partial conductance I' (kII) in Eq. (4) is the trans-
mission coefficient ' of electrons having an energy E=EF
and parallel wave vector

kII
. The key feature of I' (kII), seen

explicitly in Eq. (4), is that its dependence on the spacer
thickness L=Na is periodic. We thus expect that the total
conductance in each spin channel, and the GMR itself,
should also oscillate as a function of L. To clarify the phys-
ics involved, we first discuss oscillations of the conductance
in the simplest case of a spacer sandwiched between two
semi-infinite ferromagnets. It follows that electrons are scat-
tered from a single potential well or barrier having a different
height for the up- and down-spin carriers. To model qualita-
tively the situation in Co/Cu (Ref. 6) or Fe/Cr, we assume
perfect matching of bands between the ferromagnet and
spacer in the up-spin (majority) channel. There is, therefore,
a potential well for down-spin (minority) holes in the spacer
layer but no wells or barriers for the majority carriers.

It is straightforward to compute the GMR from Eq. (4)
but, as in the case of oscillatory exchange coupling, a very
large number of kII points is required to achieve convergence.
Typically, we use about 8000 kII points in the irreducible
segment of the two-dimensional Brillouin zone. The com-
puted GMR is shown in Fig. 1 for two qualitatively different
situations. In the first case [Fig. 1(a)], the Fermi energy
EF= 0.8 and the exchange splitting 6 =0.6 in the ferromag-

net (measured in units of the hopping) were chosen so that

Ez lies close to the top of the spacer potential well in the
down-spin channel. In the second case [Fig. 1(b)], EF lies
some distance above the top of the well (EF=0.8,5=0.3).
In both cases, well-defined oscillations of GMR with spacer
thickness L occur. In contrast to the exchange coupling, the
CPP GMR oscillations have a large constant bias equal to the
asymptotic value of the GMR reached for large L.

The most remarkable feature seen in Fig. 1(a) are beats
which clearly demonstrate the presence of two periods in the
case when EF lies close to the top of the well. We recall that
the exchange coupling evaluated for the same model ' oscil-
lates with a single period determined by the Fermi wave
vector in the spacer layer. Moreover, the single period seen
in Fig. 1(b) is not the FS period obtained for the exchange
coupling. The presence of additional periods indicates that a
qualitatively different mechanism is involved in the CPP
GMR, and we now proceed to identify it. To explain the
origin of the oscillation periods of the GMR, we exploit the
fact that the transmission coefficient I' (kII) is periodic in L.
The conductance given by Eq. (4) can, therefore, be ex-
panded in a Fourier series

&n() )e2irNk&( II)a
tl
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ImgI =0 and/or Imgg=0, (6)

where c„ is the Fourier coefficient of I (P~) and k~ is de-
fined in Eq. (2). The Fourier series representation (5) enables
us to separate the oscillatory part of the GMR (r 4 0) from
the nonoscillatory background (r =0). Applying asymptotic
expansions valid for large spacer thickness L to the oscilla-
tory component, we can derive general selection rules for the
oscillation periods.

For large L, the imaginary exponential in Eq. (5) oscil-
lates rapidly as a function of P~ and, therefore, the contribu-
tions to the sum in Eq. (5) from different P~ tend to cancel.
There are only two situations in which the cancellation does
not occur: (a) in the vicinity of a point P~

at which the phase
ki (EF,kl) is stationary; (b) in the vicinity of a boundary at
which the sum over P~ terminates abruptly. It follows that we
first need to identify all the stationary points P~ of
k~(EF, kI) and all the cutoff points Irlt~ at which 1(Iri~)

'

vanishes. All possible oscillation periods of the con-
ductance (GMR) are then given by 7rjki (EF,P~ ) and

m/k~ (EF,kt~~) .
Case (a) requires no special discussion since the periods

coming from the stationary points of k~(EF, P~) are exactly
the same as the periods of the oscillatory exchange
coupling. Case (b), however, is new and has no analog in
the theory of oscillatory exchange coupling. To guide us in
the formulation of general selection rules, we first analyze a
trilayer with two semi-infinite ferromagnets. It follows from
Eq. (4) that the boundary in P~ space at which I'(kI~) vanishes
is defined by

2'k NI' s=(&~~/4~)Re/ «„(P~)m* e '" ' jrN.
/=1

(7)

Here, m*=~[8 (k~a)/8(k„a) ][8 (k~a)/8(k a) ]~
i~2 is

the curvature of the FS at the stationary point and 7.=i when
both derivatives in m are positive, v = —i when they are
negative, and r=1 when the two derivatives have opposite
signs. It can be seen that the conductance oscillates with
period m/k~, where k~ is the extremal radius of the spacer
FS in the direction perpendicular to the layers. The oscilla-
tion amplitude decreases asymptotically as 1/L and its over-
all magnitude is controlled by two factors: the curvature of
the spacer FS and the value of the Fourier component of the
transmission coefficient at the stationary point. The latter de-
pends on matching of the bands in the direction normal to the
layers along the line

IrI~ =(k,k ). As discussed elsewhere
in the context of the oscillatory exchange coupling, an as-
ymptotic expansion of the type (7) is valid for an arbitrary
tight-binding band structure.

An asymptotic expansion about a cutoff point of the trans-
mission coefficient is more difficult and we describe it here
only for a parabolic band model of a trilayer with semi-
infinite ferromagnets and perfect band match in the up-spin
channel. It follows that only the asymptotic expansion of the
oscillatory conductance in the down-spin channel is required.
The conductance is the sum over all ki of the transmission
coefficient ' for a quasi-one-dimensional potential well of
width L and depth V. Converting the sum over P~ to an

integral over the parallel energy El=fr ki/2m, we find that
the conductance I normalized to the conductance of an ideal
spacer (without a potential well) is given by

where "or" applies in the AF configuration. The selection
rule (6) has a simple physical interpretation. In the CPP ge-
ometry the conductance in a channel P~ vanishes when the
electrons at EF with that particular value of P~ become to-
tally rejected from either the left or right ferromagnet. That
happens when the state (Ez,P~) lies outside the band of the
left (right) ferromagnet, in which case the corresponding
spectral density Imgl (Imgg) vanishes.

The selection rules for the oscillation periods of the con-
ductance are necessary but not sufficient conditions. Whether
any particular oscillation with a period predicted by the se-
lection rules is actually seen depends on its amplitude. The
amplitude and its decay with the spacer thickness L can be
determined from asymptotic expansions of the conductance
valid for large L. We first derive general asymptotic expan-
sions for oscillations originating from the stationary points.

Consider a point (k„,k ) in the P~ plane at which k~ is
stationary. Following Ref. 4, we expand k~(EF, kl) in the
argument of the exponential in Eq. (5) up to second order in

k, k» about (k, ,k ) and convert the sum over k, ,k» into an

integral. For large L, rapid oscillations of the imaginary ex-
ponential in Eq. (5) ensure that only a small neighborhood of
(k, k ) contributes to the integral. The Fourier coefficient in

Eq. (5) can, therefore, be approximated by its value at

(k, ,k ). The remaining integrals with respect to k, ,k» are
Gaussian and can be readily evaluated. This leads to the
following oscillatory contribution to the conductance in a
spin channel o at the stationary point (k, , k ):

I =(1/EF)

v O~E()~Ep —V

V sin (k~L)
1 +

4 (EF E ii) (EF E |i
——V)—

(8)

~EF /V —1

JO
c,(u)cos(2Lki~gu+ 1)du,

where k~~=(2mV/A, ) ~ and the Fourier component ci is
given by c,(u) = 16(V/EF)u(u+ 1)[1—(1—f (u)) U ]
with f(u)=[8u(u+1)+ I] '. lt is now the lower limit
u = 0 which gives the cutoff at the top of the well. The upper
limit u=EF /V 1 leads to the FS oscilla—tion with period
m/k~ and the corresponding asymptotic behavior of I' is
given by Eq. (7).

%'e now focus on the asymptotic expansion about the cut-
off point at u=0. The expansion is nonstandard because
c,(u) is not analytic at u = 0. We first make the substitution

where ki =(2m/6 )' (Ez —El) is the perpendicular wave
vector at the spacer FS. The cutoff at the top of the well
occurs at the upper limit E~~I,=EF—V of the integral in Eq.
(8). The integrand (transmission coefficient) in Eq. (8) is
periodic in L with period m/k~ and we expand it in a Fourier
series. All the Fourier coefficients c„are obtained analyti-
cally but, for simplicity, we keep only the fundamental os-
cillation r = 1. After a substitution in Eq. (8) that makes the

energy dimensionless, the Fourier expansion takes the form
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FIG. 2. Comparison of the oscillatory compo-
nent of CPP GMR calcUlated from the asymptotic
expansions (7) and (11) (dashed curves) with the
exact results (solid curves) obtained by numerical
integration of Eq. (9). Parabolic-band model: (a)
EF/V=1.3; (b) Ep/V=3. 0.

u+1=(x+1) in Eq. (9) and examine the leading term
of ci(x) for x~0. It is easy to show that c,(x)= —4(V/
EF)(2x)' . Approximating c,(x) by this leading term over
the whole integration range and integrating by parts in Eq.
(9), we obtain

sin[2k~~L (x+ 1)]r,p
= (2 +2V/EFk~~L ) dx, (10)

Jo x

where we have extended the upper limit of integration to
~. This is justified since the contribution to the asymptotic
expansion from x~~ vanishes and the correct asymptotic
contribution from the upper limit EF /V 1has alre—ady been
isolated in Eq. (7). The fact that we are approximating the
integrand by the leading term for small x everywhere is im-
material since contributions from all x other than x=o can-
cel. The integral in Eq. (10) is standard and the asymptotic
expansion I',~ takes the form

sin(2k~~L + m/4)
r„=2~~(V/E,),', „, +O[(1/k,'+L)'].

k~~L

It follows that the period m/k~~ is determined by the depth V
of the spacer potential well. The oscillatory component of the
GMR calculated from Eqs. (7) and (11) is compared in Fig. 2
with the exact results obtained by numerical integration of
Eq. (9). The only parameter in Eq. (9) is the ratio EF /V in
the minority spin channel. The results in Fig. 2(a) are for
EF close to the top of the well (EF /V = 1.3) and those in Fig.
2(b) correspond to the opposite limit (EF /V = 3.0). The beats
in Fig. 2(a) are well reproduced by the asymptotic formulas,
which confirms that one of the periods comes from the FS
and the other from the top of the well. The amplitude of the
FS oscillation given by Eq. (7) is small for EF=3.0 and,
therefore, only the oscillation with the top-of-the-well period
is seen in Fig. 2(b). It is interesting that both the parabolic

and single-orbital tight-binding band models predict that the
new top-of-the-well period is more robust than the FS period
which is suppressed when the Fermi level lies well above the

top of the well.
All our conclusions for semi-infinite ferromagnets remain

valid qualitatively for magnetic layers of finite thickness. In
this case, one has transmission across a double-barrier struc-
ture. There is now no complete cutoff at the top of the barrier
modeling each ferromagnet since I (P~) = 1 for resonances
inside the well. However, there is a finite number of such
resonances in the well and their widths tend to zero rapidly
as they move deeper in the well. It follows that one is inte-
grating in Eq. (4) (Ref. 8) essentially a function which is
nonzero only on a set of measure zero. There is, therefore,
again an effective cutoff near the top of the well. Numerical
integration of Eq. (4) confirms this conclusion.

Transmission resonances on ferromagnetic layers of finite
thickness lead also to oscillations of the CPP GMR with the
ferromagnet thickness. This effect, implicit in Eq. (4), will be
discussed elsewhere. Oscillations of GMR with ferromagnet
thickness have been observed by Okuno and Inomata for
Fe/Cr, but in the CIP geometry where we would expect this
effect to be less pronounced.

Finally, it is important to clarify why the top-of-the-well
period does not appear in the exchange coupling. The cou-
pling is a total energy effect and, therefore, bound states
inside the well contribute to it (but not to the conductance).
The oscillatory contributions to the coupling from states just
below and just above the top of the well cancel exactly since
there is no discontinuity at the top of the well. There is,
therefore, no cutoff at the top of the well for the coupling and
it oscillates only with the FS periods.
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