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Indirect exchange coupling for orthogonal anisotropies
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In magnetic trilayers W(110)/Fe/Cr/Fe/Cr, the in-plane anisotropies can be tailored in such a way that the

easy axis of the first Fe film is along [110] and that of the second one along [001].Magnetization loops of
those samples with orthogonal anisotropies were observed by Kerr magnetometry. From fitting the loops, both

bilinear and biquadratic coupling constants could be determined independently.

Indirect exchange coupling of ferromagnetic films

through a nonmagnetic spacer layer has been an active field
since its observation in Fe(100)/Cr(100)/Fe(100) trilayers'
and the observation of the oscillatory dependence of its lead-
ing Heisenberg-like term on interlayer spacing. Experimen-
tally, antiferromagnetic coupling can easily be inferred from
the magnetization loop or from giant rnagnetoresistance,
whereas the measurement of ferromagnetic coupling requires
more sophisticated methods like Brillouin light scattering
(Ref. 4) or ferromagnetic resonance. The period of the os-
cillation between ferro- and antiferromagnetic "bilinear"
coupling is well understood. ' Even the amplitude can now
be calculated correctly. A general review of indirect cou-
pling is given in Ref. 9.

In addition to the bilinear coupling, one observes in spe-
cific cases a so-called "biquadratic" coupling, which sup-
ports a 90 orientation of the magnetization in the coupled
layers. Originally introduced in order to explain the magne-
tization reversal in Fe/Cr/Fe(100) trilayers, it has been ob-
served in Co(0001)/Cu(111)/Co(0001), " Fe/Al/Fe(100), ' '
Fe/Au/Fe(100), ' Fe/Ag/Fe(100), ' yFe/Cu/Fe(100), and
FeCo/Mn/FeCo(100). Biquadratic coupling coefficients are
hard to determine and frequently cannot be separated from
the bilinear coupling coefficients. Available models of bi-
quadratic coupling include a spin-Bop-like mechanism re-
sulting from interface roughness, ' ' the role of "loose
spins" in the spacer and intrinsic mechanisms of elec-
tronic origin. At present, none of the available models is able
to quantitatively explain the experiments, the theoretical pre-
dictions typically being one or several orders too low in
comparison with the experimental data.

In this paper, we present an experimental approach to in-
direct coupling. This method offers the possibility of inde-
pendent and straightforward determination of both bilinear
and biquadratic coupling from one single measurement. The
method is based on a trilayer containing two uniaxial mag-
netic films with orthogonal easy axes. For comparison,
nearly all previous experiments on indirect coupling have
been done using samples in which both magnetic layers
showed the same fourfold or sixfold in-plane symmetry, e.g.,
Fe(100) or Co(0001). All studies of biquadratic coupling
used samples of this type. Coupling between uniaxial mag-
netic films has been investigated in two papers only. Grun-
berg et. aE investigated coupling in FelCr/Fe(110) sand-
wiches, Fullerton et. al in Fe/Cr(211) superlattices.
However, contrary to our approach, the easy axes of the

coupled films were parallel in those previous studies. To our
knowledge, coupling in trilayers with orthogonal anisotro-
pies has not been studied before.

In order to explain the method, we consider a trilayer
consisting of two uniaxial ferromagnetic layers with orthogo-
nal easy axes in the plane, coupled by a nonmagnetic spacer
layer. An external field 0 is applied along the easy axis of
layer (1) of thickness t, , the driver layer This axis by. defi-
nition is the x axis of a Cartesian system. The easy axis of
layer (2), of thickness tz, the sensor layer, is the y axis. Let
us consider the anisotropies in a quadratic approximation, the
anisotropy energy per area of layer (i) being given by

ft, ;(tp;) =k;cos y; (i = 1,2; azimuth y; of the magnetization
in layer i with respect to the x axis), with kt~O for the
driver, k2&0 for the sensor layer. Without coupling, the loop
of the sample is the superposition of an easy axis loop of the
driver with the hard axis loop of the sensor layer.

For the coupling energy per area, we write (following Ref.
9) flz(V1 p2) Jlcos(41 V 2) J2cos (91 9 2)
aim then is the determination of the bilinear and biquadratic
coupling constants J& and J2 from the equilibriums sections
of the magnetization loop. They result from a minimization
of the free enthalpy per area, q(p, , pz) =fk t(q&t)
+fk 2(tpz) +f12(tpt —

cpz)
—J,H(t tcosq&t+ tzcoscpz), where

J—s is the saturation magnetic polarization. The loop can be
easily understood if the driver anisotropy is strong enough to
obtain p& =0 for decreasing positive fields. This may be re-
alized by weak coupling, J,(lk, l, Jz&lktl, or by a weak
sensor anisotropy, kz(& lkt . In this rigid driver model, g de-
pends on @2 only, for decreasing H)0. By introducing an
exchange field H~ =J1/(J, tz), an anisotropy field

Ht, z= 2kz/(J, tz) and an effective anisotropy field
Hk eff [2kz —2Jz]/(J, tz), g may be written as

g(q 2) = (J,tz)/Hk effcos p2
—(H+H~)costpzj.

Minimization of g then results in costpz=(H+H„)/Hk ff.
The effect of the coupling consists in a shift of the sensor
loop by ( —Hz) and a change of its initial slope from 1/H„ to
1/Ht, ,ff. If Ht, z is available from the loop of the bare sensor,
both coupling constants can be determined easily as

(J tz)HQ and Jz (J tz/g)(Hk 2 Hk ff)—
In a more general case, we use a fourth-order approxima-

tion ft, ,(q&;) =k;cos p;+ l;cos4y; for the single-layer
anisotropies and determine the sample loops by numerical
minimization of g. Examples of calculated loops are shown
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in Fig. 1 by full lines. By restricting the presentation to posi-
tive decreasing fields, we avoid hysteresis problems in the
driver loop. The single film anisotropy constants are taken
from the experimental samples to be discussed below. The
result of the rigid driver model (~ki ~

=~) are given by dotted
lines for comparison. The validity of the rigid driver model
for weak coupling or weak sensor anisotropies is obvious.
The shift of the loop by bilinear coupling, combined with a
change of the initial slope by biquadratic coupling, is a com-
mon feature of the rigid driver model and the numerical
evaluation. The jumplike transition to saturation is deter-
mined by the fourth-order component of the sensor anisot-
ropy.

In realizing trilayer structures with orthogonal anisotro-
pies, we took advantage of our recent study of anisotropies
of Fe(110) interfaces. In particular, we used the fact that
the W(110)/Fe(110) interface strongly supports the in-plane
[110]axis, whereas a Fe(110)/Cr(110) interface supports the
bulk easy in-plane axis [001].Accordingly, we used samples
of type W(110)/Fe/Cr/Fe/Cr, as shown schematically in Fig.
2. The films were prepared in UHV by epitaxy on W(110),
starting with a sensor Fe layer of constant thickness
tz =Dzd (typically abut 4 nm), consisting of Dz atomic lay-
ers of interlayer spacing d. It was deposited in an optimized
mode described previously, starting at a substrate tempera-

Driver

Sensor

z [110)
i(

I 110I
=v

[001]

FIG. 2. Structure of the samples, schematic.

FIG. 1. Calculated magnetization loops for trilayer samples with
orthogonal anisotropies and symmetric thickness t& = tz= t = 4 nm

of driver (1) and sensor (2) layer. Magnetic moment component m

per area along the field direction [001]versus magnetic field H, in
units of the driver saturation moment J,t, . The full line shows the
result of numerical minimization of the free enthalpy g. Magneti-
zation J,=2.17 T of bulk Fe is used. Anisotropy parameters

k&
——+0.35X 10 J m, I, = —0.09X 10 J m, kz= —0.90

X 10 J m and Iz
= —0.15X 10 J m representing the experi-

mental samples of Fig. 3. Coupling constants J& as parameters.
Jz=0 and Jz= —0.20X10 3 J m z in (a) and (b), resPectively.
Results of the rigid driver model for comparison by dotted lines.

ture T, = 300 K in order to avoid Stranski-Krastanov island-
ing, ending up with T,= 600 K in order to obtain atomically
smooth Fe(110) surfaces with an average terrace width of 50
nm. All further layers were prepared at 300 K. The sensor
layer was covered by a Cr interlayer of wedgelike increasing
thickness tc,=D&,d (we neglect the minor difference in Fe
and Cr lattice spacings), followed by the driver layer of con-
stant thickness t& =D&d and a final Cr coverage. One end of
the sample was kept free from the driver, in order to deter-
mine the sensor anisotropies from the bare sensor loop. All
layers were structurally coherent with the basic Fe sensor
layer, as tested by high angular resolution low-energy elec-
tron diffration (HRLEED).

The in-plane anisotropies are proper superpositions of
volume and surface anisotropies. For the driver, both of
them support [001]. The driver magnetization therefore is
strongly coupled to [001].For the sensor, as a result of the
strong anisotropies of the W(110)/Fe(110) interface, the easy
axis is directed along [110]up to a thickness of about 6 nm,
where it is rotated towards [001] as a result of the increasing
volume anisotropies, supported by the Fe/Cr interface. Ac-
cordingly, the magnetization in our sensor layers of 4 or 5
nm thickness was weakly coupled to [110], as required.
Numerical data of anisotropies are given in the caption of
Fig. 3.

Magnetization loops were measured using the magneto-
optical Kerr-effect. We used the longitudinal Kerr effect
(oblique incidence of s-polarized light), probing the lon-
gitudinal magnetization component in the plane of inci-
dence. The external field being in this plane too, we
measured the usual magnetization loop m (H) = m i (H)
+mz(H), m; being the moment component of layer (i)
along the field axis. The Kerr rotation was compensated us-
ing a Faraday rotator and lock-in techniques as described in
Ref. 27. Our primary signal is the dc current I of the rotator.
The evaluation in terms of m was based on two observations
coming from auxiliary experiments: (i) ln our samples, I
is proportional to m, independently on the distribution be-
tween m& and m2, up to the maximum total Fe thickness of
8 nm. (ii) I decreases linearly with tc„again indepen-
dently on the relative contributions of m

&
and m2 to m. This

second observation is compatible with a picture of the Kerr
effect as resulting from a reflection of the light from the
W substrate, with Faraday rotations of both the incident and
the reflected light. Accordingly, we used as a basis for our
evaluation a relation I=C(m +im )z(1 —tc, /() between I
and the sample moment (mi+mz), with an empirical value
of g= 14 nm, and an appropriate constant C. The validity of
this evaluation was checked using samples for which the
sensor layer could be saturated using the available field, and
where coupling could be neglected, e.g., the sample with

D&,=29.7 in Fig. 3(a). Neglecting all coupling in this
sample, in view of the large interlayer thickness, we assume

mz(0) =0 and m(0)/m, =1, which we use to calibrate the
vertical axis. We then expect a saturation value

m„,/m, = 39.9/20. 2= 1.975, in excellent agreement with the
experimental result m„,/m, = 1.97.

A systematic analysis of the coupling phenomenon as a
function of Dc, was performed using samples of roughly
symmetric Fe thickness, Di=Dz=20 monolayer (ML), and
a wedgelike increasing number Dc, . Examples of magneti-
zation loops are shown in Figs. 3(a)—3(f). For D c,
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FIG. 3. Experimental magnetization loops m/(J, t, ) versus H
for samples W(110)/D, Fe/Dc, Cr/D2Fe/5 Cr with symmetric thick-
ness DI=Dz=20. More precisely, {D~/Dc, /Dz} are given by (a)
120.2/29. 7/19.7}, (b) (19.0/16.3/19.5}, (c) (19.0/5. 9/19.5}, (d)
(19.7/3. 4/21. 3}, (e) 119.7/2. 9/21.3},and (f) (19.7/2. 5/21. 3},respec-
tively. Closed circles for decreasing, open circles for increasing
fields. Full lines are fitting curves from minimization of g, resulting
in the coupling parameters as included.

=29.7 [Fig. 3(a)], where the coupling can be neglected, the
undeformed sensor loop is superimposed on the constant
driver moment m&=J, t, . For Dc,=16.3 [Fig. 3(b)], the

shift of the loop indicates a weak ferromagnetic coupling,
and the increase of the initial slope indicates a weakly posi-
tive Jz. For the other values of Dc„dramatic changes in the
sensor loop are observed, both for the initial slope, and for
the loop shift. In order to determine the coupling parameters
from the loops, one needs the single-layer anisotropies from
independent measurements. The sensor anisotropies could be
determined from the hard axis loop of the bare sensor layer;
see Fig. 2. The driver anisotropies were determined from our
previous work. Using these anisotropies, the loop fitting
resulted in the coupling parameters which are included in
Fig. 3.

As a result of an analysis such as that in Fig. 3, we show
in Fig. 4(a) the bilinear coupling parameter J& and in Fig.
4(b) the biquadratic parameter J2, both versus Dc„from
two samples, both with D&=D2=20 ML. Full evaluation by
numerical simulation (full symbols) was performed for a se-
lected group of loops only. Results obtained using the rigid

FIG. 4. Coupling parameters J, (a) and J2 (b) versus Dc„for
sandwiches with symmetric thickness of Fe layers, DI=Dz=20.
Circles and triangles from different samples. Full symbols from
numerical simulation, open symbols from the rigid driver model. (c)
and (d) as (a) and (b), respectively, but for D, =13,D2=25.

driver model (open symbols) are shown for comparison. As
expected, the differences are small for the case of weak cou-
pling. The oscillation ofJ&

above D«= 10 could therefore be
obtained using the rigid driver model. The measurements for
the samples with symmetric Fe thickness were supplemented
by samples with asymmetric Fe thickness, roughly DI =25,
Dz=13. The resulting coupling parameters J& and Jz are
shown in Figs. 4(c) and 4(d), respectively. As a common
gross feature of both series, we observe strong antiferromag-
netic extremum with J~ = —0.8(—1.0) X 10 J m (values
for the second series, Figs. 4(c) and 4(d), in brackets) at

Dc,=4.0(3.6) ML, that means tc,=0.80(0.72) nm, between
zeros at Dc,= 0.29(0.22) and 0.79(0.79) ML, or

tc,=0.58(0.44) and 1.58(1.58) nm. This is in excellent
agreement with previous work of Grunberg et ah. , who ob-
served an antiferromagnetic minimum of J&= —0.7X10
J m at t«=0.7 nm between zeros at 0.45 and 1.45 nm.
Both series show a ferromagnetic maximum at

Dc,=11(10) ML. A second maximum at 22 ML is found
only in the first series, a common minimum in both series at

Dc,= 15(16) ML. As a whole, we observe a long-period os-
cillation of JI with a period of AD«= 11 ML or At«= 2.2
nm. This is similar but definitely different from the results of
Fullerton et al. for the case of Fe/Cr(211) and Fe/Cr(100)
superlattices, for which they reported a common period of
AD«=9 ML or At«= 1.8 nm. In both series we observe a
strong biquadratic coupling for D«&7 ML. Details are dif-
ferent: a clear extremum of Jz at about D«= 3 ML for the
samples with asymmetric thickness cannot be found in the
symmetric samples. The magnitude of the biquadratic cou-
pling is again surprisingly large. WE can only speculate on
the origin of this strong coupling. The most probable inter-
pretation, in our opinion, is a modified version of Slonc-
zewskis first spin-Aip model. ' A HRLEED analysis of a Cr
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layer of about 3 ML, near the extremum of Jz in Fig. 4(d),
shows a considerable interface width of about 5 ML. If this
would include long range fluctuations of the film thickness,
similar as observed for the autoepitaxy of Fe on Fe(110),
an interlayer of 3 ML Cr could consist of rather extended
areas of opposite sign of the coupling, for DC,~3 ML and

DC,~2 ML, respectively. Because the magnitude of Jz, in
Slonczewskis model, increases with the width of the homo-
geneously coupling areas, a comparatively large width which
is not unreasonable in our model could roughly explain the
large value of Jz. The clear dependence on the thickness of
the driver layer supports this idea. However, further experi-
ments including detailed analysis of the film structure are
obviously needed for a full understanding of the biquadratic
coupling.

In conclusion, we have shown that magnetization loops

of indirectly coupling trilayers with orthogonal anisotropies
of the ferromagnetic layers provide a useful method for mea-
suring both bilinear and biquadratic indirect exchange cou-
pling parameters. Coherent epitaxial samples W(110)/Fe/Cr/
Fe/Cr can be tailored to provide those orthogonal
anisotropies in the film plane. The evaluation of their mag-
netization loops results for the bilinear coupling in a stron~
antiferromagnetic minimum of J,= —(0.9~ 0.1)X 10
J m near Dc,=4 ML, followed by a weak oscillation with
a period of about 11 ML Cr. For the biquadratic couplin~
parameter, strong values down to Jz= —1.6X10 J m
were detected. The method allows one to measure even posi-
tive values of Jz, which actually are observed in some of our
samples.
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