
CONDENSED MATTER

THIRD SERIES, VOLUME 52, NUMBER 2 1 JULY 1995-II

RAPID COMMUNICATIONS

Rapid Communications are intended for the accelerated publication of important new results and are therefore given priority treatment

both in the editorial office and in production. A Rapid Communication in Physical Review B may be no longer than four printed pages
and must be accompanied by an abstract Page p.roofs are sent to authors

Lifshitz-Slyozov scaling for late-stage coarsening with an order-parameter-dependent mobility

A. J. Bray and C. L. Emmott
Theoretical Physics Group, Department of Physics and Astronomy, The University of Manchester, M13 9PL, United Kingdom

(Received 31 March 1995)

The coarsening dynamics of the Cahn-Hilliard equation with order-parameter-dependent mobility, k(P)
~(1—P ), is addressed at zero temperature in the Lifshitz-Slyozov limit where the minority phase occupies
a vanishingly small volume fraction. Despite the absence of bulk diffusion for a~0, the mean domain size is

found to grow as (R)~t'~i + i, due to subdiffusive transport of the order parameter through the majority

phase. The domain-size distribution is determined explicitly for the physically relevant case u= 1.

The phenomenon of spinodal decomposition in, e.g., bi-
nary alloys, is usually modeled by the Cahn-Billiard
equation'

( BFi
=V ()i.Vp, )=V )i. V 8'

for the order-parameter field P. Equation (1) takes the form
of a continuity equation, ci,$= —V j, with current
j= —XVp„where X is a transport coefficient ("mobility" )
and the chemical potential p, is the functional derivative,
p, = SF/8$, of a Ginzburg-Landau free-energy functional
F[P] given by

(1
(V 4)'+ I'(4)-

Here V(P) is the usual double-well potential whose minima
(taken here to be at P = ~ 1) represent the equilibrium
phases.

In conventional treatments of (1), the mobility k is taken
to be a constant, i.e., independent of the order parameter

Recently, however, there has been considerable
interest in cases where X depends explicitly on P, notably
through the dependence X(P) = ko(1 —P ). This interest has
a physical origin. It has been noticed that when one models
the coupling to an external driving field E, such as gravity,
through an additional term Fi [P]= EJd"x z P(x) —in

F[@) (where here the field K is in the z direction), this extra

term does not change (1) unless k depends on P. This is
because BF, /8$= Ez, and V z=0—. Physically, it is clear
that an external field of this form accelerates the phase sepa-
ration, so li. must be P dependent. Indeed, phenomenological
derivations ' of )i. yield precisely the form X~(1—P )
alluded to above. Furthermore, the coarsening dynamics of
this model has been studied by computer simulations, both
with ' ' and without external driving forces. It is therefore
interesting to study this problem in its own right, even with-
out external driving forces.

In this paper, we study a general class of systems de-
scribed by Eq. (1) with

k=(1 —P )

(we absorb the constant ko into the time scale). To make
analytical progress, we specialize to the case where the mi-

nority phase occupies a vanishingly small volume fraction.
For the conventional case (a=0), this is the limit treated by
the seminal work of Lifshitz and Slyozov (LS),' and by
Wagner, " which leads to the result (R)~t'/ for the mean
domain size, and gives an exact expression for the domain-
size distribution. For general a~O we find (R)~t
We also determine explicitly the domain-size distribution for
the physically relevant case u= 1. (The other physically rel-
evant case, tz= 0, has been treated by LS.)

For small volume fractions, coarsening proceeds by
nucleation and growth rather than by spinodal decomposi-
tion. For present purposes we limit discussion to the late
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BF
p, = = V'(P) —V P (4)

where the prime indicates a derivative. In the bulk phases,
away from the interface, P varies slowly in space and the
V P term in (4) can be neglected. Setting P= —1+P in the
minus phase (with P= e at infinity), Eq. (4) gives, to lowest
order in P,

p, (r) = V"( —1)P(r), r)R

Inserting this result into (1), using (3) for k, and retaining
the leading terms for @(&1,gives, in the minus phase (away
from the interface),

~i4=2 V"(—I)& (0 &4) . (6)

stages of growth, described by the LS evaporation-
condensation mechanism, by which large domains [of radius
R)R,(t)] grow at the expense of small ones (with
R~R,). In this regime the droplet size distribution has the
scaling form n(R) =R, f(R/R, )

Before we proceed, two comments are in order. We have
noted that phenomenological considerations indicate that (3)
with n=1 is an appropriate form for the mobility in the
Cahn-Hilliard equation (1). This being the case, one may
wonder about the physical relevance of the conventional
(i.e., with n=O) Cahn-Hilliard equation. The point is that
thermal noise, omitted from (1), reduces the magnitude of
equilibrium order parameter from unity to @0. Since thermal
fluctuations are irrelevant on large scales, however, one can
continue to work with the noise-free equation (1), provided
that (inter alia) one uses a renormalized potential whose
minima are now at ~ $0. The bulk mobility then takes the
value k&„~&=1—P0) 0, and conventional LS behavior is re-
covered. The relevance of n=1 is then limited to "deep
quenches, "where the effect of thermal noise is small enough
that the predicted t growth extends over a significant time
domain (before t ' LS growth eventually sets in). In simu-
lations, of course, one can simply work at zero temperature,
when the r behavior (or t ~ + in general) will describe
the asymptotic growth.

The second comment concerns the role of surface diffu-
sion. It has often been stated that (without thermal noise) a
factor (1—P ) in the mobility prevents bulk diffusion, and
therefore surface diffusion (i.e., diffusion along the inter-
faces), which leads to t ~ growth, is the dominant coarsening
mechanism in this case. It is true that the bulk diffusion
constant vanishes for n)0 [see (6) below]. In the far off-
critical systems discussed here, however, where the minority
phase does not percolate, surface diffusion alone cannot lead
to large-scale coarsening. It turns out that for n)0 there is
still bulk transport, although this of a subdiffusive, rather
than diffusive, character.

We begin by considering a single spherical domain of
"plus" phase, with radius R, immersed in a sea of minus"
phase. We suppose that the minus phase is supersaturated
with the plus phase, i.e., P= —1+e at infinity, and we work
in the limit of small supersaturation, e(&1. First note that the
chemical potential p, is given by

Note that, except for o.=O, this equation is not of the usual
diffusive form. We shall find, nevertheless, that it still leads
to bulk transport, albeit of a subdiffusive character.

We now make the usual assumption (to be verified a pos-
teriori) that the interface moves slowly enough (for large R)
that the chemical potential is always in equilibrium with the
interface. Then the time-derivative term can be set to zero in

(6).Using the linear relation (5) between p, and P in the bulk
minus phase, (6) can be recast as

+2( 1+cl) 0 (7)

a simple generalization of the Laplace equation V p, =O ob-
tained when n=O.

What are the boundary conditions on (7)? At infinity, we
have

/ ( )—=/-=V"( —1)0(~)=V"(—1)~ . (8)

The second boundary condition, at r =R, is just the usual
Gibbs-Thomson boundary condition

p, (R) = o./R (9)

( )1+a
/
" (~) =/ '"+ R—p, —, r~R

r (10)

The time dependence of R is obtained by considering the
flux of material to (or from) infinity. The current j through
the minus phase is

J'(~)= », /
= (24) ~,/— —

2a ( )1+m
1+A

(1+.)[V (-1)]- (R,

leading to an outward fiux of material f= —2
X4rrR dR/dt=4rrr j(r) (where the factor of 2 on the left
represents the difference of P between the two phases). This
gives

Ci
dr R LRi+~ R'+

C

(12)

where C=[2o/V"( —1)] [o/2(1+u)] is a constant, and
R, = a/p, „=a./eV"( —1) is the critical radius, i.e., the do-
main will grow if R~R, and shrink if R(R, .

For the case of zero supersaturation (e=O), R,=~ and
dR/dr = —C/R + . In this case all drops shrink (by evapo-
ration of material to infinity). The collapse time r, for a drop
of initial size R scales as t,~R +, which already suggests
the scaling R,(r)-t ~t + ~ when evaporation and condensa-
tion mechanisms compete in the many-domain situation.

where o is the surface tension. To derive (9), one first writes
(exploiting the spherical symmetry) V @=8„$+(2/r)8„$
in (4). Then one multiplies (4) by 8„$ and integrates across
the interface. Using the fact that 8„@is sharply peaked at the
interface gives p(R)b, P= —(2/R) fdr (8„$) = —2o/R,
where hP= —2 is the discontinuity in P across the inter-
face. This reproduces (9).

The solution of (7) with boundary conditions (8) and (9)
1S
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Consider now a dilute assembly of spherical drops of
various sizes. The derivation, for general u, of the scaling
distribution of sizes follows that of LS for u=O. The basic
idea is that one has a time-dependent critical radius R,(t)
which is determined self-consistently. Suppose that, in the
late stages of growth, the distribution of domain radii is
given by the scaling form

R RR,x=
R, (2o)

double zero at x=x . To see why this is so, consider the
time evolution, for a given domain, of the scaled radius
x=R/R, . From (12) one obtains

n(R, t) =
4 f— (13)

1 I'1 1

(3+n)yt jx x + (21)

where n(R, t)dR is the number of domains per unit volume
with radii in the interval (R,R+dR). The prefactor R,
ensures that the volume fraction occupied by the domains,
P= JdR (47rR /3)n(R, t), is conserved. Inserting (13) into
the continuity equation

1
g(x)(3+ u) yt

(22)

with the last equation defining g(x).
The function g(x) has a single maximum in the interval

(0,~). If y( yo, where

Btl 8
+ (vn)=0,

Bt BR
(14) (I+ ) / 2 )2 (/1+a)

3+~/ (3+~/ (23)

C (I 1 ) (2+~

where R,=dR, /dt —Consiste. ncy requires that the R, depen-
dence drop out of this equation. This gives

R, R,= yC (16)

where v = dR/dt is the domain-wall velocity given by (12),
yields

then the maximum lies above the x axis and g(x) has two
zeros x& and x2, with x&(x2. Under the dynamics (22), if
X&x& initially, then x Bows to zero, whereas if X)x& then x
Aows to x2. However, as t ~, X2R,~~ which violates the
conservation of the order parameter. Similarly, if y)yp,
g(x) is negative everywhere in (0,~), and all domains flow
to zero size, which again violates the conservation. We con-
clude that y= yp.

For y= yo, the maximum of g(x) lies on the x axis, and

g(x) has a double zero at

where y is a constant, implying

R,(t) = [(3+u) yct]'/(" '

/3+ i 1/(1++)

m
)

(17)
Equation (18) then gives

(24)

Thus the characteristic domain size grows as t' ~ + ~ as an-
ticipated. This result generalizes the usual t LS growth
law.

Using (17) in (16), the latter can be integrated directly, in
the form

" 2+ cl' x 4ypx
lnf(x) =, 3+,+ dx

X(ypX X + 1
x~x

(25)

f(x) =0 otherwise. (26)
1' df I' dx 2+n —x + —4yx +

J f & x yx+ —x'+ +1 (18)

where we remind the reader that x is the scaled radius,
x =R/R, .

It would seem that there is a family of solutions, param-
etrized by y. In fact this is not so—there is a unique value of
gamma, determined following the method used by LS. First
we recall that conservation of the order parameter requires
that the total volume of the domains in the late-stage scaling
regime (where the value of the order parameter in the major-
ity phase approaches —1) be conserved, i.e.,

4~ ~ 4m 1

dR R n(R, t) = dx x f(x) = P,3 Jo
' 3 so

(19)

where P is the volume fraction of the minority phase. It
follows that there is a maximum value, x, of x above which

f must vanish. Otherwise, (18) implies f-x for x~~,
and the integral (19) will be (logarithmically) divergent. In
fact, the denominator of the integral in (18) must have a

3
f(x) =aoPx (3 —2x) '" (x+3) / exp'—

3 —2x)
(27)

for x(x =3/2, and the usual LS result' is recovered. The
normalization condition (19) gives ao= 186.13.. .

For el=1,

f(x) =a, Px (2 —x ) / exp 2 —x (28)

for x(+2, where a&=7.785. . . . Equation (28) gives the
scaling distribution of domain sizes for the modified Cahn-
Hilliard equation simulated in Ref. 3, although in that work
the domain-size distribution was not measured.

It remains to justify the claim that one need consider only
stationary solutions of (6), i.e., that the interfaces move so

While this integral cannot be evaluated for general a, the
scaling function can be determined for the two cases of
greatest physical interest. For n=O,
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slowly that they can be regarded as stationary while @ re-
laxes. In other words, we want to justify the "adiabatic"
approximation of treating @ as given by its equilibrium con-
figuration for the instantaneous positions of the inter-
faces. We consider late-stage coarsening, when R, is the

only characteristic length scale. Using @= p, / V"(—1)
-o/R, V"(—1), Eq. (6) gives the relaxation time of @, for
fixed interfaces, as t„t-R,/V"( 1)P——R, + V"( 1)—
o. . From (16), the characteristic interface velocity is
B,R,-C/R, +, where C is given below Eq. (12).This gives
the typical distance moved by an interface in time t„& as
t„Bt,R, o-/V"( —1). This fixed length (of order the inter-
face thickness) is negligible compared to R, , justifying the
approximation.

We note that the derivation of the t &
+ ~ growth requires

that the potential V(P) have quadratic minima, since the
amplitude of the power-law growth depends (except for
a=0) on V"(—1) through the constant C in (17). It is in-
teresting that for cr= 0, R,(t) depends on the potential only
through the surface tension o., and is therefore independent
of the detailed form of V(P). The question of the appropri-
ate form of the potential for deep quenches deserves further
consideration.

We stress that the results presented here are, like the origi-
nal LS calculation, valid only in the limit where the minority
phase occupies an infinitesimal volume fraction. In particu-
lar, we anticipate significant corrections to the domain size
scaling function (28) even for t/r as small as 10 . This is
certainly so for a = 0, and improved forms for f(x) have
been suggested by a number of authors. It would be inter-
esting to see whether similar techniques can be used for gen-
eral n.

By contrast, we expect the domain size growth law,
(R)-tie(s+ ), to hold whenever the minority phase consists
of isolated domains. Lacasta et al. . measure an effective
growth exponent of 0.20~0.01 from two-dimensional simu-

lations with a=1 and /=0. 3. The extrapolation to late
times (their Fig. 3) required for comparison with the present
predictions does not, however, seem completely straightfor-
ward. Also it should be noted that the present theory is re-
stricted to three dimensions. While extension to general d )2
is straightforward, and will not change the growth law, the
case d=2 is special (because of the singular form of the
Green's function for the Laplacian) and requires a separate
study.

If both phases are continuous, one needs to consider the
competing surface diffusion process, which leads to t
growth for the characteristic length scale (defined now, for
example, by the first zero of the pair correlation function).
We conclude that, when both phases percolate, bulk transport

(t r( + ) growth) dominates for n~ 1, surface diffusion
(t'~ growth) dominates for u) 1, while both processes con-
tribute the same t ~" growth for n=1. For /=0. 5 (and
cr= 1) Lacasta et al. measure an effective growth exponent
of 0.22~ 0.01, again below the expected value of 1/4.
Longer runs may be helpful in clarifying whether this dis-
crepancy is real.

In summary, the Lifshitz-Slyozov theory of late-stage
coarsening has been generalized to a class of models with
vanishing bulk mobility. Coarsening occurs by subdiffusive
transport of the order parameter through the majority phase.
The growth law for the mean domain size, and the scaling
form for the domain-size distribution, have been determined
in the LS limit where the minority phase occupies a vanish-

ingly small volume fraction. The result for the growth law,
however, should hold whenever the minority phase consists
of isolated domains.
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