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Hybrid excitons in parallel organic and inorganic semiconducting quantum wires
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We study excited states in parallel neighboring organic and inorganic semiconducting quantum wires. Due to
the resonance dipole-dipole interaction between the wires, the hybrid exciton is a mixture of Frenkel and
Wannier-Mott excitons. For the transition dipole moments oriented perpendicular to the wires, the interwire
hybridization strength is nonzero even for small exciton wave vectors along the wires and decays rather slowly
with increasing interwire spacing. This is in contrast to two-dimensional quantum wells where the dipole-
dipole coupling decays fast with increasing interwell distance and is nonzero only for nonzero excitonic wave
vectors. The hybrid wire excitons possess both a large radius and a relatively large oscillator strength, which
could be especially interesting with respect to applications in nonlinear optics.

There has been considerable progress in the preparation of
organic and semiconductor nanostructures (see, e.g., Ref. 1).
Therefore, in the near future the fabrication of composite
organic-inorganic semiconductor heterostructures seems to
be possible. We realize that the preparation of such systems
might be a rather difficult problem. However, the expected
unique physical properties of such systems would justify the
efforts. As has been noted recently,? a new type of excitonic
state in such heterostructures could be possible due to reso-
nant mixing of Frenkel and Wannier-Mott excitons. The hy-
brid excitons would possess strong oscillator strengths (typi-
cal for Frenkel excitons) and high sensitivity to external
perturbations (typical for Wannier-Mott excitons).

The heterostructure considered in Ref. 2 consists of a two-
dimensional (2D) organic molecular layer and a neighboring
semiconductor 2D quantum well. For such a system, the
electrostatic coupling of Frenkel and Wannier excitons van-
ishes in the range of small two-dimensional exciton wave
vectors. This is a consequence of the well-known fact that
the electric field of a uniformly polarized layer vanishes out-
side the layer. Thus, the conditions for the manifestation of
hybridization effects are not favorable just for the most in-
teresting small wave-vector excitons that interact actively
with light.

In the present paper we propose another organic-inorganic
semiconductor system where the hybridization of Frenkel
and Wannier-Mott excitons is especially effective just for
excitons with small wave vectors. We consider a system of
parallel organic and semiconductor quantum wires. The
Frenkel |F,k,l) and Wannier-Mott |W,k,l) exciton states in
the wires are characterized by a one-dimensional (1D) wave
vector k and the label / counting quantized states of the
transverse motion of excitons within the wires. To simplify
the consideration, below we restrict ourselves to the lowest
transverse state of excitons and omit the label /. The reso-
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nance coupling of the Frenkel and Wannier-Mott excitons is
governed by the hybridization parameter

F(k)=<F’k|Hint|W’k>’ (1)

where the interaction Hamiltonian H;, for a pair of wires is
given by

Hint=_f E(r)-P(r)dr. )

Here the integration is carried out over the semiconductor
wire; P(r) is the transition polarization operator for Wannier-
Mott excitons

P(r)= u"¥,(r)¥,(r)+Hec., 3)

where W ,)(r) is the electron (hole) operator and u" the
(intracell) optical transition dipole moment. In Eq. (2) E(r)
is the operator of the electric field created in the semicon-
ductor wire by the exciton in the organic wire

3(r—ra)i(r—ra);|  H
|l‘—l‘u|2 e|r—rn|3(A“+A“)’

“)

where summation runs over sites n (with the radius vector
r,) of the molecular lattice, A}, is the creation operator of the
Frenkel exciton at the site m, and u” the transition dipole
moment for Frenkel excitons; € is an effective dielectric
function of the medium; indices i,j denote vector compo-
nents in Cartesian coordinates with the z axis chosen along
the wires, and the x and y axes perpendicular to the wires;
and the y axis is perpendicular to the plane determined by
the wires. The state corresponding to the Frenkel exciton is
represented as

Ei(r)= “2 6ij—
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1
|F.k)y= \/72 exp(ikz,)AL|0), 5)
F n

where N is the total number of molecular sites and |0) is
the exciton vacuum state. For the state of the Wannier-Mott
exciton we take the following representation:

Zp

1 L Zet
|W, k)= f] dz dzuexp| ik 5 Dy(z,—zp)

XUl (z)¥](24)]0). 6)

Here L is the length of the wires. The operators \If;r(h)o(z)
correspond to the lowest (/=0) state of the transverse mo-
tion in the operator expansion over transverse modes ¢;:

‘I’Z(h)(r)=zl \I'z(h)z(l)d’:(h)z(l’), @)

where r=(p,z). The function ®y(z,—z,) in Eq. (6) de-
scribes the relative 1D motion of the bound electron and the
hole. We consider only the lowest transverse state; then the
transition polarization operator Eq. (3) for the Wannier-Mott
exciton becomes

P(r)=pu"¥ 4(2)¥)0(2) peo(P) Pro(p) +Hec. 8

Using Egs. (2)—(8) we obtain the following expression for
the hybridization parameter I" of Eq. (1):

Neuin)
T(k)=fer®o(0) \| 7= Ciy ©)
where
fehzf deo(P) bro(P)d’p, (10
exp(ikz) 3r;r;
Cij= (R2+z2)3/2[ ij—R2+Z]2 dz

=—2[(V;— ik5iz)(v,+ —ik8;)Ko(kp)lp=(r0) - (11)

The first line of Eq. (11) is obtained under the simplifying
assumption that the interwire distance R is large in compari-
son with the thickness of the wires; V7 denotes the deriva-
tive with respect to the transverse variables (i=x,y); K is
the modified Bessel function of zeroth order with the follow-
ing limiting behavior:*

o
_ — >1
Ko(x)={ V2x*P(7%) = (12)
—1In(x/2), x<1.

As follows from Eq. (12), the interwire coupling is sup-
pressed exponentially for excitons with wave vectors
k=1/R, i.e., for the major part of the Brillouin zone. On the
other hand, coupling of excitons with relatively small wave
vectors k=<1/R is quite effective. This is in contrast to the
case of a 2D system of quantum wells where the coupling at
small wave vectors is suppressed because the electric field
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FIG. 1. Energies E . (k) of the hybrid excitons plotted as func-
tions of the wave vector k on the upper part (solid lines). Dashed
lines represent the energies of Frenkel [£ (k)] and Wannier-Mott
[E w(k)] excitons. The latter is taken in the effective-mass approxi-
mation, the former is approximated by a constant that is taken as the
origin of the energy axis. The figure corresponds to the following
parameter values: I'=5 meV, Ep—Ey(k)=2 meV, and Wannier-
Mott exciton effective mass M =0.3m, (m, is the free electron
mass). Energies are measured in units of I'; wave vectors in units of
10° cm™!. The lower part of the figure shows the behavior of the
weights |A|2, | B|? of Frenkel and Wannier-Mott counterparts for the
hybrid state corresponding to the “+” sign in Eq. (16).

outside of a uniformly polarized layer vanishes. The range of
small wave vectors k~1/A<<1/R is of special interest, as
excitations with such wave vectors may be created straight-
forwardly by light of wavelength \. In the leading order in
kR <€1, the hybridization parameter I'(k) Eq. (9) has the fol-
lowing form:

feh 2SF F

_ W_  F, W
I'(k)= gz alBUF(/Ly/Ly My ), (13)

where Sy and v are the cross section and the volume of an
elementary lattice cell for the molecular wire; the 1D exciton
ground state wave function ®,(0)=1/y2a5 in the strong-
confinement limit has been expressed in terms of the 1D
Bohr radius a3=(ay/2) VEy/E, with a, and E being the
Bohr radius and the ground-state energy of the bulk exciton,
respectively; and E; is the ground-state energy of the 1D
exciton (see Refs. 4 and 5).
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Note that the excitonic polarization component along the
wires does not contribute to I' in the leading order in kR.
This is due to the obvious fact that a uniform longitudinal
polarization is not accompanied by the appearance of an
electric charge. To estimate the value of I' we use the fol-
lowing parameter values: a;3=30 A, uF=5D, u"=10D,
SFp=(50 A)2, vy=100 A3 R=50 A, f,,=1, and e=3,
and we obtain '~5.4 meV.

The resonance coupling of Frenkel and Wannier-Mott ex-
citons results in the appearance of hybrid excited states

|\If,k>=A(k)|F,k)+B(k)|W,k). (14)
Here
[T (k)|
O o B T
(15)
Bl= 4,
E(k)—Ew(k)

where E gy (k) are the energies of Frenkel (Wannier-Mott)
excitons and the energies E(k) of the hybrid state (see Fig.
1) are given by the well-known expression

E . (k)=[Ep(k)+Ew(k)]/2
= E (k) —Ew(k)1?/4+T2(k). (16)

The coupling is strong when the energies of Frenkel and
Wannier-Mott excitons are in resonance: |Ep(k)—E y(k)|
~|T'(k)|. In this case the size of the hybrid state is com-
parable with that for Wannier-Mott excitons, i.e., it is much
larger than the radius of Frenkel excitons. This causes a high
sensitivity of the hybrid states to external fields. Outside the
resonance range, the coupling is governed by the parameter
I'?/(Ep—Eyw) and is rather small. The condition of reso-
nance is rather strict for the considered range of parameters
and requires a careful choice of materials for both wires.
Naturally, the exciton linewidths should be small as com-
pared to I'. In general, the excitonic linewidth is determined
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by the radiative decay and by other dephasing processes. For
the transition dipole moment oriented perpendicular to the
wire, the contribution 7,4 to the Frenkel exciton linewidth
caused by the collective radiative decay in a 1D wire is given
by

(u5)2Spk?
4'7TUF

Even for k=27/\ and A=5000 A, we find y,,¢~0.1 meV,
which is significantly smaller than the above estimation of
5.4 meV for I'. The quantity 7y,,q decreases fast with de-
creasing k. In fact, the main contribution to the excitonic
linewidth in quantum wires is of nonradiative nature and due
to scattering processes on the structural imperfections, sur-
face corrugation, etc. At low temperatures, the nonradiative
linewidth may be ~1 meV for Wannier excitons, and even
smaller for Frenkel excitons. These linewidths may be thus
smaller than the resonant splitting 2I"'~11 meV of the hybrid
excitations.

Up to now, the consideration has been restricted to the
case of a pair of wires. The results obtained may be straight-
forwardly extended to the case of a 2D array of alternating
organic and semiconductor wires. Due to the periodicity in
the alternation (x) direction of the array, the excited states
acquire an additional label, which is the wave-vector compo-
nent k, . Due to the fast decay of I' with increasing interwire
distance, the hybridization may be considered in the nearest-
neighbor approximation. In this approximation I'(k,k,)
=2I"(k)cos(kR).

In conclusion, we have demonstrated the possibility of
strong resonance hybridization of Frenkel and Wannier-Mott
excitons in parallel organic and inorganic semiconductor
wires. The new states possess the properties of both types of
excitons. They have a large size like Wannier-Mott excitons,
but they have also a large transition dipole moment that is
typical for Frenkel excitons. Thus, one could expect strong
nonlinear optical effects in such systems.

7:ad(k)= B k<=2a/\. (17)
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