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Coulomb-gas approach to quantum motion in random magnetic fields

B. Cardinetti
Universita di Milano, sede di Corno, Via Castelnuovo 7, 22100 Corno, Italy

V. G. Benza and L. Molinari
Dipartimento di Fisica, Universita di Milano, and Istituto Nazionale di Fisica Nucleare (Sezione di Milano),

Via Celoria 16, 20133 Milano, Italy
(Received 2 March 1995)

We study the motion in the plane of a spinless particle subject to a random magnetic field, in terms of
Feynman's influence functional. We show that with 8'-correlated fields the Gaussian regime is dominated by
one-dimensional quantum motion over classical walks. In the case of long-range field correlations the system
is described as a two-dimensional Coulomb gas, where the plasma phase is dominated by free-particle propa-
gation and the low-temperature phase by a regime of strong coupling between advanced and retarded paths.
The semiclassical regime is also discussed.

The quantum mechanics of a spinless particle in the plane
under the inhuence of a random magnetic field models vari-
ous condensed-matter situations, ranging from propagation
in chiral spin liquids ' to quantum Hall systems near even-
denominator filling fractions. In particular, at filling factor
v= —,

' the Aux lines carried by the particles scree&i the external
field, so that the effective dynamics is described by a zero-
average static random field. Various numerical studies on the
lattice and analytical works have been devoted to the spectral
properties of the problem. ' A mobility edge has been
found, ' while a priori one would expect only localized
states, since the system belongs to the unitary class of local-
ization theory. More recently the critical exponent of the
localization length has been obtained, apparently with the
character of universality, also in the presence of an impurity
potential. By generalizing the localization theory in the
framework of the unitary ensemble to the case of a random
magnetic field with zero average, Zhang and Arovas
pointed out that, although the topological term is absent, field
fluctuations generate a logarithmic coupling between topo-
logical densities. This leads in a natural way to a sine-
Gordon model for the topological phase so that a
localization-delocalization transition is expected with the
characters of the Kosterlitz-Thouless class.

We discuss the system in the absence of an impurity po-
tential, using the quantum description of Feynman's inAu-

ence functional, which allows one to deal with classical
averages of quantum probabilities: in this approach one di-
rectly considers two-particle Green's functions, and interfer-
ence effects between advanced and retarded contributions are
made transparent. We determine the effective action with
8'-correlated and long-range field fluctuations: in the latter
case we map the problem to a Coulomb gas system. %'e also
study the Gaussian regime, where a zero mode is found cor-
responding to area-preserving deformations of the paths.

As announced, we deal, rather than with amplitudes, with
quantum-mechanical probabilities. The time evolution of the
density operator

(xi~ p(T) ~x2) = d xid x2(xi
~
p(0) ~x2)3 (xi,xi, x2, x2)

(1)

involves a two-path integral,

W(x, ,x,';x, ,x,') = m, (~)m, (~)e"'"'"o(*i) 'o&"z ',

(2)

where xi(r) and x2(~) represent retarded and advanced
paths, respectively, satisfying the boundary conditions
xi(T)=xi, xi(0)=xi, x2(T)=x2, and x2(0)=x2. In our
context the action So[x] describes the two-dimensional spin-
less particle in a magnetic field B(x) orthogonal to the plane:

fT M e
So=Sk,„+S,s„= d7. —x (r)+ —A[x(r)] x(~) .

Jo C

The Coulomb gauge, divA=O, can be solved in terms of a
scalar field q&(x): A = BYq&, AY= —B„rp with equation
—V tp(x) =B(x). The action is then written in terms of the
magnetic field:

e t'T ( a
Sm, „[x]=— dr~ x(7.)2mc ) o ( ay(r

a—y(r) ~ d 'x
B( x)1

~

n'x—x(r)~
clx(r)i J

I7/

d x'B(x') O(x', [x)),
C'o J

where tlio =hc/e is the elementary flux quantum and, using
the cross product aX b a&by Gybe,

x(r) && [x(r) —x']
0'(x', [x])=—

~
dr

i ( ),i2

The global phase 0" (x';[x]) of the path x(r) only depends
on its geometry, that will herefrom be called walk [x], and is
the sum of two contributions: the first is given by 2m times
the winding number of [x] around the point x'; the second is
a boundary term, being the angular width of the vector
x(T) —x(0) viewed from x'. For closed paths it can be non-
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zero only in the interior of [x], where it takes the values
~ 2~n: in this case the magnetic action is proportional to the
flux of the magnetic field through [x]. Notice that
0(x';[x]) is discontinuous across the walk: a natural pre-
scription is to fix its value there as the average among the
values taken in contiguous domains. In this way 8(x';[x])
is piecewise constant along [x], where its discontinuities cor-
respond to self-intesections. Being a topological index, its
value in x' is not affected by deformations of the walk, un-
less it is crossed by it. Thus the first variation is nonzero only
on the walk itself:

f
S,r([x]=Sk;„[x]—1 — d x'Q (x', [x]),

2g

l

d x'Q (x';[x])=g n, A;. (14)

g=4~ fiD4
IfA; are the areas, with winding numbers n;, into which the
interior of the walk [x] is partitioned, the topological term in
the effective action is

fT
8(x';[x+(])=0(x';[x])—2rr dr x(r)

Jo

X g(r) 82(x' —x(r)).

The second variation is

fT
dr(g(r) X gr)+[x(r) Xg(r)]$(r) V„)

ao

(6)

For large disorder D, the main contribution comes from
closed paths x(r) with zero enclosed area, that is, in the time
interval (O,T) the particle retraces the geometry covered in
the time interval (—T,O), although not necessarily with the
same time law. If one naively restricts to such trajectories, he
is left with a sum over retarded and advanced histories along
each walk, together with a sum over walks. This corresponds
to a classical average over one-dimensional quantum mo-
tions, with scattering at the self-intersections.

By making the effective action (13) stationary one obtains
the equations

x 6'2(x' —x(r)). (7)

Q(x', [x])= (8(x';[x2])—0(x';[x,])j. (8)

The time stationarity of the problem allows one to reformu-
late the path integration in terms of a single closed path
x(r), —T& r(T, subject to the conditions x( —T)
=x(T)=x, x(0)=y:

f
W(x y'B) = ~(r) e

—(r/6)skinl. x) (i/6)Smagn(

where S,s„[x] has the form (4) and the kinetic term is

While studying the probability of return one restricts the in-
tegration in the functional (2) to couples of paths x, (r) and

x2(r) joining the same points: x, (T)=x2(T) = x,
x1(0)=x2(0)=y. Therefore, the walks [x1] and [x2] to-
gether form a closed walk [x]= [x1]U [x2] with geometric
index

g fT
«1 «2[x(rl) 4( 1)][x(r2) 4(r2)]—T J —T

(16)X 82(x(rt) —x(r2)),
which fully inhibits the fiuctuations g(r) normal to the orbit

Mx( r) +y ( r) sgn( r) (b —ig Q (x( r); [x]))= 0,
(15)

My'( r) —x ( r) sgn( r) (b —i g Q (x( r); [x]))= 0,

where a nonzero average value b =(e/c)B for the B(x) field
has been assumed, and the effective interaction appears as an
imaginary contribution to the magnetic field. Since we are
dealing with a quantum open system, complex-valued solu-
tions should also a priori be taken into account; notice that
the kinetic energy is always conserved. A solution that mini-
mizes the effective action is clearly given by the classical
motion in the absence of disorder joining x to y and back-
wards.

The effective action in the Gaussian regime, around solu-
tions x(r) of (15), is affected by a 8-like singularity in the
term

M fT
Sk;„[x]=— dr(x (r) —x ( —r)). (10) x(r) X g r) = 0; (17)

Let us assume that the magnetic field is random, with a
8-correlated distribution:

P[B]~exp — d x B (x) .

The inhuence functional, by means of which average quan-
tum probabilities are computed, is easily obtained:

I
f

W(x, y) = .M3(x)P[B]W(x,y;B) = ~(r) e

(12)

with effective action

hence the quantum fluctuations are strictly one dimensional.
While studying the semiclassical regime around a high-
energy rectilinear path, Altshuler and Ioffe pointed out that
the transverse variations are exponentially suppressed. Con-
trary to the present approach, where we deal with quantum
probabilities and compute variations of the exact effective
action, they averaged the single-particle Green's function
and put by hand a reference retarded trajectory in the Feyn-
man path integral, ensuring gauge invariance.

Let us examine the case of smooth fluctuations, where we
average over the measure

2P[B]~exp — d x[!V'B(x)i +m B (x)] . (18)2+)
For small m, the effective action becomes
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X Q(y';[x])ln(m~x' —y'~). (19)

It is useful to view the geometric index Q(x', [x]) as a
(integer-valued) charge density. Each walk [x]=[xi]U[xz]
determines in the plane a pattern of uniformly charged do-
mains undergoing a screened Coulomb interaction; in anal-

ogy with Eq. (12), we can write the Coulomb term as a sum
over the domains S; enclosed by the loops in [x] with uni-
form charge densities n;:

g n, d x d y In(mix —yl)
i JS;

+2+ n n; d x d Y In(m~x —y~).i(j s; s. (20)

From now on we will limit ourselves to the case of long-
range fluctuations m —+0, where only globally neutral charge
configurations contribute to the functional integral,
Xng;=0. In the Gaussian regime around a fixed trajectory
x(r) =xi(r) =x2(r), 0~ r(T, the transversal fiuctuations
are no longer inhibited, but a zero mode is found satisfying
the condition

x(r) X [$i(r) —$2(r)] = 0. (21)

y, X 2
c g 2

0
(22)

This result is consistent with the analysis performed in Ref.
16 in that we also find a critical behavior belonging to the
Kosterlitz- Thouless class.

According to this picture, at weak disorder (y(( y, ), the
extended wave function is enhanced over islands of the typi-
cal size of the plasma screening length k, =X ln '4JyX";

In other words the domains can undergo deformations pro-
vided the total charge is conserved: the mode spans a
"charged-liquid sector" of the theory.

Notice that since Q(x;[x]) is adimensional, the coupling
constant yrIio in (19) is dimensional. A connection with
known results of the Coulomb gas is made by introducing a
coarse-graining of the charge boundary on a cutoff scale X,
defined by fixing a minimal de Broglie wavelength
X=h(2ME, „) ~ . By rewriting the magnetic action term
in (19) as sums over plaquettes of area k, one obtains a
Coulomb gas at the inverse temperature P= yX 4'o . The
identification allows us to estimate the plasma-dielectric
transition at

with the inclusion of an impurity potential this phase corre-
sponds to the localized phase of Ref. 16.

In the strong disorder phase (y) y, ) there is infinite cor-
relation among charges, and, accordingly, the advanced and
retarded paths are strongly coupled. Indeed, in this regime,
for each field configuration, mainly walks lying close to the
network B(x)=0 do contribute to the conductivity, since
particles in regions of strong magnetic field tend to drift
along orbits with small cyclotron radius. The single-particle
spectrum in a smoothly varying magnetic field has been stud-
ied in Refs. 19 and 20: together with states confined within a
narrow one-dimensional region near the line of zero field,
also states propagating in the opposite direction, but spatially
separated, do occur. As a result, finite longitudinal conduc-
tivity was obtained along the network B(x)=0. If the field
has a nonzero average the network does not percolate, and a
positive magnetoresistance is expected. These arguments
suggest that strongly coupled paths enhance the conductivity
when the field fluctuates over large scales, but only by a
careful analysis of backscattering effects can one determine
whether the quantum phase coherence survives over an infi-
nite length.

Let us now summarize our results: in the case of 8' corre-
lations the strong disorder regime forces the advanced and
retarded histories to lie along the same walk. In the Gaussian
regime the transversal fluctuations are completely inhibited.

Smooth correlations lead to a Coulomb interaction be-
tween domains enclosed by advanced and retarded paths.
More precisely, the real (interface) part of the action gives
the kinetic phase along the boundaries of the domains, and
the imaginary (bulk) part is the Coulomb term, which de-
pends on the walks but not on the histories. The problem is
then to determine the effect of the bulk transition both on the
boundaries (walks) and on quantum motion (histories) over
them. On qualitative grounds the following picture can be
drawn. If the charges are in the plasma phase (y~ y,), we
have a regime of weak perturbation of the free motion, where
the extended wave function is enhanced in islands of the
order of the plasma screening length. In the dielectric re-
gime, at strong disorder (y) y,), the charges form bound
states with infinite correlation length and oppositely oriented
channels are strongly coupled. The question arises as to
whether this implies the conservation of quantum phase co-
herence. In this respect our picture is in agreement with Ref.
16, but we stress that the proof of the existence of extended
states requires an analysis of the effect of backscattering at
various energies.

One of us (V.G.B.) wishes to thank M. Kohmoto for
bringing the problem to our attention some time ago, and B.
Bassetti for interesting comments.
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