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We have studied correlation functions of the one-dimensional Hubbard model using the density-matrix
numerical renormalization-group approach. The singularity exponents of the momentum distribution at

k=kF and 3k&, as well as the power-law singularity of the spin-correlation function, are computed for large
U (U/t = 10 ). The momentum-distribution exponent at k = k„and the spin-correlation exponent are in agree-
ment with the analytic results, while the calculated exponent for momentum distribution at k=3kF is about

4, which disagrees with the analytically predicted value 8. We also discuss several techniques for an accurate
calculation of the correlation functions.

Ever since the discovery of high-T, superconductors and
the realization that electron-electron correlations play an im-
portant role in these materials, the Hubbard model has at-
tracted a great deal of attention. Following a suggestion by
Anderson that the one-dimensional (1D) Hubbard model
serves as a paradigm for the two-dimensional system, a
number of techniques has been used to study the 1D Hub-
bard model, which has a non-Fermi liquid ground state. The
spin- and charge-correlation functions show power singulari-
ties at zero temperature. Also, the Fermi distribution function
does not have a finite jump, but rather a power-law singular-
ity at the Fermi surface. Using the large U limit of the Bethe
ansatz solution of the Hubbard model, Ogata and Shiba
pioneered an explicit numerical calculation of the singularity
exponents for various correlation functions. Soon afterwards,
the exponent of the spin-correlation function was calculated
analytically, and all the exponents were derived by the
bosonization technique and mapping onto a conformal field
theory (CFT), based on the Bethe ansatz solution and the
Luttinger liquid framework, proposed by Haldane. These
exponents have also been reproduced by a "mean-field-type"
calculation using non-Abelian gauge transformations. In
particular, for the large U limit, an exponent of 1/8 for the
momentum distribution function at kF was predicted which
has been verified at the same time by numerical
calculations. ' A power of 9/8 at large U has also been pre-
dicted to show up at k= 3k+. However, there is, so far, no
strong numerical evidence to support it.

In this paper we use the recently developed, powerful
density-matrix renormalization-group (DMRG) method to
calculate the correlation functions for the large U Hubbard
chains for system length up to 24 sites with periodic bound-

ary conditions. The key idea behind DMRG is to keep the
most significant states of the block density matrix instead of
eigenstates of the block Hamiltonian. The method has been
tremendously successful in studying the spin-1 Heisenberg
chain ' and the Kondo lattice problem. We have calcu-
lated the singularity exponents of the momentum-distribution
function at kF and 3k& as well as the power-law spin-spin
correlation function at 2k&. Our result for the singularity at

kF is in agreement with the evaluation by Ogata and Shiba
from the exact solution. Our exponent for the spin-spin cor-
relation function at 2kF also agrees with the analytical re-
sults. However, the exponent for the momentum-distribution
function that we obtained at 3k„ is about 3/4, which is
smaller than 9/8, expected from the scaling relations.
This poses new questions for further study near this singu-
larity.

We study the correlation functions for the 1D Hubbard
model,

H= —tg (c; c;+, +H.c.)+Up n;tn;1,

where ct creates an electron of spin o. at site i,. We study the
system at 1/4 filling with a total number of electrons
N=N&+N& and N&=N&=L/4, U/t=10 . We use periodic
boundary condition (PBC) for L =4,12,20 and antiperiodic
boundary condition for I.=8,16,24, following the reasoning
of Ogata and Shiba. The momentum distribution and spin
correlation are evaluated explicitly as
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FIG. 1. The 1D array of cells used in our DMRG calculations on
Hubbard chains. Sites are indicated by X. The dashed lines repre-
sent the electron hoppings. The boxes are the inserted cells.
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where s', =(n;t —n;1)/2 and ( ) denotes the ground state ex-
pectation value. We use the infinite chain DMRG method to
prepare the initial blocks, and then use the finite chain
method to calculate the correlation functions. In order to
treat PBC, we use a configuration somewhat different from
the conventional one. The Hubbard chain is represented by
an array of cells with two sites in each cell (see Fig. 1),
where the line between the sites (symbol X) indicates the
electron hopping. The two edge cells differ from the rest by
having electron hopping between the two sites within the
cell. We insert two cells (i.e., four sites) in the middle of the
array at each step. Although this makes the working Hilbert
space larger and calculation more difficult, inserting four
sites is commensurate with 1/4 filling we study and makes
the calculation converge much faster, as discussed below.

We first report the results of the calculated correlation
functions before turning at the end of the paper, to a discus-
sion of techniques that make these calculations possible. Our
calculations are done for chain length L =4,8,12,16,20,24
and by keeping up to 100 optimized states at each step in
both infinite chain initialization and the finite chain itera-
tions. The truncation error is less than 10 at all steps. One
complete finite chain iteration involves optimizing each of
the block state sets from a small block size to a large block
size by moving the inserted cell from one edge to the other
(Fig. 1).After three iterations, the change in the ground state
energy is at the eight digit between the successive iterations.
We use the ground state wave function to calculate n(k) and
S(k) when the optimizing steps come to the middle of the
chain in the finite chain iteration, since this step gives the
lowest ground state energy and the best wave function. We
accept the calculated n(k) and S(k) as final results when the
percentage differences in n(k) and S(k) evaluated in succes-
sive iterations are less than 10 . The final results are ob-
tained usually after several runs of finite chain iterations. The
relative error 10 is taken into account when analyzing the
final results. The n(k) for L = 8 to 24 are plotted in Fig. 2,
and the S(k) are plotted in Fig. 3. The magnitudes of n(k)
and S(k) around their singularities are listed in Table I. In
Fig. 2, the singularities at k=kF and k=3kF of n(k) are
obvious. The exponent a of n(k) at k=kF is defined as

FIG. 2. The momentum-distribution function n(k) for the Hub-
bard chain at filling N& /L =N& /L = 1/4. Two singularities at
kF = m/4 and 3kF = 3 m/4 are evident. The open circles are for L = 8;
open squares, L = 12; open triangles, L = 16; round dots, L = 20; and
black squares, L = 24. The dotted line indicates n(k) for L = 24.

n(k) =nk C ikI k„—I sgn(k ——kF), (3)

where nk = 1/2. Following Ogata and Shiba, using

nk =1/2, we have determined the exponent u by plot-

ting in Fig. 4 In[nk —n(k) ~]
—In[In& —n(ko) ~] versus

In(Ik —kF~) —In(~ko —kFI) using one k value from each L
that is the closest to kz. ko is taken to be the one of
L=24. We get a-I/8. Using the same method, we have
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FIG. 3. The Fourier transformation S(k) of the spin-spin corre-
lation function (s', s'). The singularity is at 2k~ = m/2,

S(0)= (Xs',.)(X ) sL=/0, and S(7r) —0.125 for filling 1/4. The
open circles are for L = 8, open squares for L = 12, open triangles
for L = 16, round dots for L = 20, and black squares for L = 24. The
dotted line indicates S(k) for L =24, while the dashed line is S(k)
for U=O.
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TABLE I. n(k) and S(k) around their singularities. Filling

Wt =At =L/4, on-site interaction U/t = 10 .
I I

i
I I I I

i
I I I I

16 20 24

n(kF m—/L)
n(kF+ 7r/L)

n(3k~ —7r/L)

n(3k„+ 7r/L)

S(2kF —2 m/L)

S(2kF)
S(2k„+2 vr/L)

0.7014
0.1769
0.09518
0.02652
0.08966
0.2114
0.1357

0.6909
0.1999
0.08384
0.03085
0.1284
0.2237
0.1473

0.6840
0.2140
0.07749
0.03398
0.1502
0.2314
0.1572

0.6787
0.2240
0.07337
0.03629
0.1646
0.2369
0.1653

0.6744
0.2318
0.07048
0.03806
0.1750
0.2409
0.1720

also plotted in Fig. 4 In[In31, —n(k)I] —In[In3I, —n(ko)I]
versus ln(Ik —3kFI) —ln( ko —3kFI) for k, the closest to
3k+ for each I. with ko being the one of I.= 24.
n3I, = 0.051 is used to get the best fit. Thus we get P-3/4 in

F
n(k)=n31, —CIk —3kFI~sgn(k 3kF) In —Fig. . 3, the spin-

correlation function S(k) is plotted. Just like S(k) from the
exact solution, ' the singularity at 2kF is clearly demon-
strated. Since Szk is finite, the power of S(k) at point 2kF
requires a careful analysis. Using the form
(s',.s,'.)- Ii

—j I
icos(2kFIi —jI) suggested by many authors,

one finds for k=2k++5:

S(k) —S21, =
JO

dr (1—e' ")r

and

d[S(k) S2k ]
dA Jo

dr e'' r Q2
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FIG. 4. The singularities of n(k) at kF and 3kF are displayed in

this ln-ln plot. The data points plotted are for system size L at the k
value that is the closest to kz or 3kF for that L. The lines are of
slope 1/8 (dashed), 3/4 (dotted), 1 (full line), and 9/8 (dot-dashed).
The open circles are for k~kF, and round dots are for k~kF,
while the open squares are for k(3k+, and black squares are for
k)3kF .
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FIG. 5. The ln-ln plot of [S(k)—S(2k„)]/(k —2k~) around the

singularity at 2kF . The dashed line is of power —0.64. The open
circles are for k(2kF, and round dots are for k)2kF .

In Fig. 5, we have plotted In[I S(k) S 2k I/Ik 2kFI]—
-»[IS(ko) —S2~,1/Iko-2kFI] v«su»n(lk —2kFI)
—In(Iko —2k~I) for k, the closest but not equal to 2kF
at each I. with ko being the one for I.= 24.
We get y' —0.64 in d[S(2kF+5) —S2p„]/d&=CI&I
where the power y in the coordinate represen-
tation (s', s') —Ii —jI icos(2kFIi —j I) is given by
y=2 —y' —1.36. In order to investigate the effects of state
truncation on the accuracy of our calculation, we have also
calculated the exponents by keeping a smaller number of
states m=80. Comparing them with the results for m=100,
the values used for Fig. 4 and Table I, there is a typical
change of about 1%%uo for I =20 and much less for smaller I .
We have obtained essentially the same exponents using the
m=80 data. The resulting absolute error is larger for both
n and P for m = 80 than for m = 100, but relatively u devi-
ates from 1/8 more than p deviates from 3/4.

Taking into account the relative error 10 3 of n(k) and
the exponent deviation on both k&kF and k~kF sides, we
get the range for the exponent n, 0.08& o.&0.16. Similarly,
the range of the exponent p is 0.7(p(0.8. Both exponents
a and p are extracted from the n(k) in the same way as
discussed above. Since the relative error in n(k) in both
cases is about the same, the absolute error for both n and

P should be similar. For the power y, we have not estimated
its error since the data on both k)2k& and k(2kF sides are
not good enough. From Fig. 5, it is clear that one needs a
longer chain length to fix the power y. The analytical results
for the momentum-distribution function exponent at k=k~
and the power-law decay of spin-spin correlation function
are a=1/8 and y=3/2. Our calculations agree with these
results. However, our calculated exponent p at k=3kF is
3/4, which is smaller than the analytical result P=9/8. It is
interesting to note that the calculated value is less than 1,
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which makes the 3kF singularity of the first order (i.e., the
first derivative diverges, just like the one at kF) instead of
second order.

It is at present not clear what this discrepancy is due to. In
our numerical simulations the chain length used may not be
long enough. However, the exponent we calculated at kF is
correct for the same chain length. On the other hand, the
linear energy dispersion near the Fermi surface is an essen-
tial assumption in both bosonization and CFT treatments.
Under this assumption the scaling relations between critical
expoenents, i.e., only three of them are independent, have
been derived. ' These relations have been verified, to our
knowledge, only for exponents near kF and 2kF . As pointed
out by Haldane, and reemphasized recently by Schulz, the
deviation from linear dispersion in actual lattice models
should give rise to high harmonics q=(2n+1)kF, for any
integer n, in the fermion operator expansion. This, in turn,

may modify the exponents at 3k+. If, indeed, this is the case,
our numerical results indicate that there is some unforseen
physics to be explored. Another possibility is that the quarter
filling is a special case, when higher harmonics intervene in
numerics. Anyway, some further studies are certainly needed
to clarify the issue.

We now discuss some technical aspects that enable us to
calculate the correlation functions accurately using the
DMRG m.ethod. We find that at each DMRG step, the algo-
rithm with m states being kept converges especially fast to
the correct value at infinite m at commensurate filling for the
added block. For example, when studying quarter filling, we
insert two sites at a time instead of one site, as normally
done. The quarter filling is commensurate with adding one
electron for two sites. We find that the convergence to the
infinite I value is much faster than at 3/8 filling, which is
not commensurate, although in both cases the error as indi-
cated by the weight of the retained states is quite similar. The
latter point is understandable because the weight of retained
states does not have an absolute meaning. The reason for

this superconvergence at the commensurate filling is because
the DMRG is a real space technique. We need to keep states
with different particle and spin (S,) quantum numbers.
When the particle density of the added block for the integer
number of added electrons is exactly the same as the average
density and when the density is uniform, the weight of the
block states peaks at a particular value of particle and spin
quantum numbers. It is then particularly efficient to save
these states because the number of states for other quantum
numbers nearby needed to be saved, is less. In order to keep
the density uniform, we should use PBC. For the open
boundaries the density is not uniform, and the superconver-
gence is lost. In addition, the PBC restores the translational
invariance, which reduces the finite size effect and is essen-
tial for our calculation.

In summary, we have calculated the correlation functions
in the strong coupling 1D Hubbard model using the finite
chain DMRG method with PBC. We have calculated the spin
correlation with its power law singularity at k= 2kF, and the
momentum distribution with its critical exponents at k=kF
and k=3kF for large U (U/t= 10 ). The calculated power
for spin correlation at k = 2kF and the exponent for momen-
tum distribution at k= kF agree with the results of analytical
analysis. However, the calculated exponent for momentum
distribution at k= 3kF is less than 1, and this result disagrees
with the analytic prediction of 9/8. This problem should be
investigated further since some unforseen physics may be
involved.
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