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A real-space scheme based on density-functional molecular dynamics is presented. Two issues are addressed.

One is the use of an exact finite-difference form of the kinetic-energy operator within a supercell geometry. The
second is the introduction of a preconditioning operation in real space. Numerical tests with ultrasoft pseudo-

potentials show satisfactory accuracy and efficiency of the present real-space scheme.

Car and Parrinello' unified molecular dynamics and the
electronic density-functional theory under the adiabatic
(Born-Oppenheimer) approximation (see Refs. 3 and 4 for
review articles). Since then, their method, "density-
functional molecular dynamics (DF-MD), "has been applied
to various systems, such as solid, liquid, surface, amorphous,
and so on. In DF-MD, the adiabatic electronic ground state
for a given nuclear configuration is determined by fictitious
quenching dynamics with the "force" on wave functions.
The most widely used scheme is developed in reciprocal
space, called the "dual-fast Fourier transformation (FFT)"
scheme, ' on the basis of a supercell approximation and a
pseudopotential formalism that allow plane-wave expansion
of wave functions.

In the dual-FFT scheme, the kinetic-energy part of the
wave functions is calculated in reciprocal space. The
potential-energy part is calculated from the charge density in
real space and then transformed into reciprocal space. For
each orbital updating, this procedure requires (21t/+2) rou-
tines of fast Fourier transformation, which is dominated by
O(NMlogM) operations and consumes CPU time. ' Here &
is the number of occupied orbitals and M is the number of
bases. Since M and N are proportional to the system size or
the volume of a bulk system, the operational cost of the
(2N+ 2) FFT routines is crucial in large systems. Up to now,
one can simulate systems containing only about a few hun-

dred atoms in a periodic unit.
In the current scheme of DF-MD, the orthonormality of

the wave functions is preserved throughout quenching by
Lagrange multipliers. Calculation of the Lagrange multipli-

ers requires O(/t/ ) operations and causes another serious
problem in the CPU time for simulations in large systems.
Mauri et aL solved this problem by introducing the "uncon-
straint minimization" technique, where one can reach the
correct ground state without any explicit orthonormalization
procedure. Furthermore, they pointed out that their formal-
ism can be applied to large systems with a localization con-
straint to orbitals.

One of the promising proposals for simulations in large
systems is the real-space scheme by Chelikowsky and
co-workers, ' where wave functions are defined and updated
on real-space equi-interval mesh points and the kinetic-
energy operator T is written in a form of real-space finite
difference

and

j,(r) = [Z'+ V.tt(r) e,]y, (r)— —

(2)

where r is a mesh point in real space and V,tt(r) is a pseudo-
potential. Chelikowsky and co-workers ' construct a formu-
lation with a fixed boundary condition of vanishing wave
functions, but not a periodic boundary condition (supercell
approximation). The real-space scheme is advantageous be-
cause (i) this scheme can avoid the (2%+2) FFT routines,
the most time-consuming part in the current scheme, and is
more amenable to implementation on parallel computing; (ii)
it can prepare a local basis set that allows a localization
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constraint to orbitals; and (iii) it can be free from a supercell
geometry and is applicable to charged or isolated systems.

In this paper, we develop the real-space scheme in two
main points; one is a formulation within a supercell geom-
etry. A supercell approximation is good for neutral bulk sys-
tems and is advantageous because the Hartree potential can
be generated by two FFT routines. In the formulation without
a supercell geometry, ' the Hartree potential is obtained by
direct integration or numerical solution of the Poisson equa-
tion on the real-space grid. The present scheme requires only
two FFT routines for each orbital updating and omits the
other 2% FFT routines in the current scheme. Furthermore, a
supercell approximation leads to an exact finite-difference
form of the kinetic-energy operator, as explained below. The
second point is the introduction of a preconditioning operator

in a form of real-space finite difference so as to accelerate
convergence to the ground state.

In the following, we explain in more detail the exact
finite-difference form of the kinetic-energy operator and the
preconditioning operation in real space. Then, numerical
tests of the He atom and H2 molecules with the ultrasoft
pseudopotential are performed and show that the present
scheme is equivalent to the current dual-FFT scheme in ac-
curacy and the iteration number for convergence.

First, we obtain an exact finite-difference form of the
kinetic-energy operator within a supercell geometry. Using a
pseudopotential formalism, one can assume wave functions
to be "soft,"or smoothly varying on real-space equi-interval
mesh points. On this assumption, the kinetic-energy operator
is exactly written on the mesh points (x,y, z) in a form of
finite difference as

1
Tp(x, y, z) = —— g f(j h)[@(x+jh, y,z)+ @( xy+j h, z)+ p(x, y,z+j h)]

j= —J (3)

(g„gl )s—in(gi, x) 2gl cos(gLx)(gl sin(g„x) cos(gLx) —ghcos(g„x) sin(gl x))x)—= — . +
sin(gLx) sin (gLx)

where h is the spacing of the real-space grid, L =(2J+1)h
is the size of a supercell and g„=7r/h and gi =rr/L.
Mesh points in the supercell are denoted as jh

(j = —J, —J+ 1, . . . ,J—1J) in one direction. The function

f(x) is the second-order derivative of the function F(x),
1

( 2~ ~ sin(g„x)
F(x)—= g exp i jxL i sin gLx)

'

which is the 6 function on the mesh points. Here we make
some comments on this exact finite-difference form of the
kinetic-energy operator. (i) The number of required mesh
points in the summation of Eq. (3) is not M=(L/h)
=(2J+1), the number of all the three-dimensional mesh
points in the supercell, but only 3M ~ . (ii) To clarify the
equivalence to the dual-FFT scheme, one can find that this
finite-difference form of the kinetic-energy operator is exact
for wave functions that can be expanded into plane-wave
bases with the reciprocal vectors g s where IgI (g„. (iii) The
present expression of the kinetic-energy operator does not
coincide with that of the usual finite-difference form with
(2J+ 1) points, though the higher-order expressions of such
finite differences are, numerically, equal to the present ex-
pression.

Now turning to the second point, we discuss a precondi-
tioning operation in real space. Since DF-MD performs itera-
tive orbital updatings until they reach the ground state, the
total CPU time is proportional to the iteration number nec-
essary for convergence. It was pointed out in Ref. 4 that the
Kohn-Sham Hamiltonian has high-energy eigenstates, which
leads to poor convergence, and that such high-energy eigen-
states are nearly plane-wave states. To accelerate conver-

1
I Pu;](r) —=— u;(r)+

r' =h(~1,~1,~1)

u;(r+ r')

where u;(r) is the force on the ith orbital, or the right-hand
side of Eq. (1).The second term in the right-hand side of Eq.
(6) is the average of the function u;(r) on the six nearest
mesh points. To see that the operator P (m product of P; m
is a positive integer) has the required quality of the PC op-
erators, we transform it into momentum space and obtain the
representation

Pme ig I' 3+cosg, h+ cosg~h+ cosg, h
ig r

6

where g=(g, ,g~, g,). This shows that the operator P is
positive definite for —~/h(g, gY, g, (7r//i and diagonal in
momentum space. Furthermore, eigenvalues of P go to
zero once the momenta g's become large. From these prop-
erties, the operator P prevents the growth of erroneous
high-momentum components of wave functions, just as the
PC operator in Refs. 4 and 13. In other words, the operator

gence, Teter and co-workers"' proposed a "precondition-
ing" (PC) that reduces erroneous high-momentum (high-
energy) components of the force on wave functions and
leaves low-momentum components unchanged. Their PC op-
erator is positive definite and diagonal in momentum space.
In the dual-FFT scheme, this procedure is done in reciprocal
space with a negligible operational cost.

In the real-space scheme, the representation of such a PC
operator should be in a finite-difference form. We introduce
such an operator P in a form of real-space finite difference
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FIG. 1. Charge density of a He atom in real space. We plot the
results in the dual-FFT scheme (~) and the present scheme (0),
comparing with a pseudoatom (solid line), a solution of the radial
Schrodinger equation on a logarithmic mesh. Note that the plotting
data in the two schemes are indistinguishable in the graph.

FIG. 3. Force on a wave function of a Hz molecule in real space
in the case of the interatomic distance of 1.4 a.u. We plot the force
on wave function before the preconditioning () and after the (first-
order) real-space preconditioning (0). Two ions are located at
x= ~0.7 a.u.

P is, essentially, a real-space representation of the PC op-
erator in Refs. 4 and 13. In numerical calculations below, we
use the PC operators P with m = 1,2,3,4,5,6, where the op-
eration numbers of the PC (at most 7m) are, though not
always negligible, much smaller than that of the kinetic-
energy operator (3M ' ), because the number of three-
dimensional mesh points M = (L/h) is typically of an order
of 100 .

As numerical tests of the present scheme in accuracy and
the iteration number for convergence, we calculated the
ground state of the He atom and the H2, molecule. Our cal-
culations are based on the ultrasoft pseudopotential ' and
the local-density approximation (LDA) with the Perdew-
Zunger exchange-correlation potential. It is only a minor
modification to transfer the program from the dual-FFT
scheme into the present one, because we can use the same
procedures to generate the potential V,rt(r) from the charge
density. One main point of the modification is the kinetic-
energy part, as discussed above. Another is that the inner
products in the nonlocal, separable pseudopotential are done
on the real-space mesh points. %'e use a cubic supercell with
a size of L =8 a.u. The grid spacing h is h=0.25 a.u. or
h=0. 125 a.u. For comparison, we also calculate the dual-

FFT scheme with the same grid spacings. The corresponding
"cutoff" energies for wave functions in the dual-FFT
scheme are 35 Ry in the case of h=0.25 a.u. and 100 Ry in
the case of h =0.125 a.u. , respectively. It is noteworthy that
the two schemes are inequivalent in effective cutoff energy;
the dual-FFT scheme requires a cutoff momentum of g, for
wave functions in reciprocal space and 2g, for the charge
density, ' while the present scheme requires an effective cut-
off of 2g, both for wave functions and for the charge density.
So, in a strict sense, the two schemes are equivalent only
when the cutoff g, is large enough.

In results of the He atom with the grid spacing of
It = 0.125 a.u. (equivalent to the cutoff energy of 100 Ry), the
total energies of the dual-FFT and the present scheme agree
within 10 a.u. (0.01%). In Fig. 1, we plot the resultant
charge density in the dual-FFT and the present scheme and
compare them with that of the pseudoatom, a solution of
radial Schrodinger equations on a logarithmic mesh. The re-
sults in the dual-FFT and the present scheme agree excel-
lently. The agreement not only on the total energy but on the
local charge density means that the Hamiltonians in the two
schemes are identical and that the finite-difference form in
Eq. (3) of the kinetic-energy operator is exact in case of soft
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FIG. 2. Total energy and the force on ions of a H2 molecule as
the function of the interatomic distance. We plot the results in the
dual-FFT scheme (0) and the present scheme (0). Note that the

plotting data of the forces in the two schemes are indistinguishable
in the graph.

FIG. 4. Iteration number necessary for convergence in the
present scheme with the m th-order preconditioning
(m=0, 1,2,3,4,5,6). The convergence criterion is 10 a.u. in the
total energy or 10 a.u. in the force on ions.
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wave functions. For the H2 molecule, we calculate the elec-
tronic ground state with some interatomic distances. For both
grid spacing A=0.25 and 0.125 a.u. , the equilibrium inter-
atomic distances in the two schemes are estimated to be be-
tween 1.45 and 1.46 a.u. , which agrees with other LDA
results (1.44 —1.45 a.u.). Figure 2 shows the total energies
and the forces on ions as the function of interatomic distance
with a grid spacing of 0.125 a.u. (equivalent to the cutoff of
100 Ry). We can find, again, an excellent agreement between
the results in the two schemes. From the above agreement
between the two schemes on the total energy, the local
charge density and the forces on ions, we conclude that the
present scheme is equivalent to the dual-FFT scheme in ac-
curacy.

As numerical tests for the present real-space PC, we cal-
culate the electronic ground state and the force on ions of the
H2 molecule with an interatomic distance of 1.4 a.u. The
calculations are done using the grid spacing of 0.25 a.u.
(equivalent to the cutoff of 35 Ry) and the mth-order PC
P, where m=0, 1,2,3,4,5,6. The resultant total energies
agree within 10 a.u. (0.01%) for all m's. This shows that
the present real-space PC does not affect the resultant ground
state of the electrons. Figure 3 demonstrates the effect of the
real-space PC acting on the force on wave functions; i.e.,
smoothing and moderating locally in regions near the ions.
The iteration numbers to obtain a satisfactory convergence
are summarized in Fig. 4, where the criterion for conver-

gence is 10 a.u. in the total energy or 10 a.u. in the force
on ions. The reduction of the iteration numbers necessary for
convergence is remarkable; i.e., the present real-space PC
P reduces the iteration number from 1500 in the case of
m = 0 to 45 for m = 6. For comparison, the same calculations
are also done in the dual-FFT scheme with the corresponding
cutoff (35 Ry) and the resultant iteration numbers for con-
vergence are 150 (without PC) and 20 (with the reciprocal-
space PC). From these results, we conclude that the present
real-space PC accelerates convergence by a factor of two
orders of magnitude and is essential in order to obtain the
real-space scheme with a comparable iteration number for
convergence to the dual-FFT scheme.

In summary, we develop the real-space scheme of DF-MD
in two points. First, we construct a formulation with a super-
cell geometry and use an exact finite-difference form of the
kinetic-energy operator. Second, we introduce a PC opera-
tion in real space to accelerate convergence to the ground
state. Numerical calculations in the present scheme and the
current dual-FFT scheme shows that the present scheme is
equivalent to the dual-FFT scheme in accuracy and the itera-
tion number for convergence. Furthermore, the present
scheme requires only two FFT routines for each iteration.

The numerical calculation was carried out on the NEC
SX-3 computer at the Institute of Molecular Science at Oka-
zaki in Japan.
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