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Controversy concerning the pairing symmetry of high-T, materials has motivated an interest in those mea-

surable properties of superconductors for which qualitative differences exist between the s-wave and d-wave

cases. We report on a comparison between the microscopic electronic properties of d-wave and s-wave

superconductors in the mixed state. Our study is based on self-consistent numerical solutions of the mean-field

Bogoliubov —de Gennes equations for phenomenological BCS models which have s-wave and d-wave conden-

sates in the absence of a magnetic field. We discuss differences between the s-wave and the d-wave local
density of states, both near and away from vortex cores. Experimental implications for both scanning-

tunneling-microscopy measurements and specific-heat measurements are discussed.

Since shortly after the discovery of high-temperature su-

perconductors (HTSC), there has been great interest in deter-
mining the pairing symmetry of the order parameter. ' In the
absence of disorder, low-temperature electronic properties in
the Meissner state of a d-wave superconductor differ quali-
tatively from those of a conventional s-wave superconcon-
ductor because of the existence of nodes in the gap function.
These differences can in principle be used to identify the
pairing symmetry, although strong anisotropy and the com-
plicated nature of the materials have conspired to make con-
clusive experiments difficult. (Recent work is strongly sug-
gestive of d z Y2 pairing. ) It is also of interest to study
differences between the mixed states of d-wave and s-wave
type-II superconductors. In the mixed-state magnetic Aux
will penetrate the superconductor and form an Abrikosov
vortex lattice. Low-lying quasiparticle excitations will then
exist for both pairings, although in the conventional case
they must be bound to the vortex core where the order pa-
rameter vanishes. The existence of bound quasiparticle states
was first predicted by Caroli, de Gennes, and Matricon
when they studied an isolated vortex line in a conventional
superconductor. Experimentally, these quasiparticles have
been observed in scanning-tunneling-microscopy (STM)
measurements. For the d-wave case, progress has recently
been made on both experimental and theoretical fronts. Vo-
lovik has used semiclassical approximations, ' valid when
the coherence length is much larger than the mean particle
spacing, to calculate the spatially averaged density of states
(DOS) at the Fermi energy N(0) for the mixed state of a

2 Y2 superconductor in a weak magnetic field H &&H, 2 . He
found a finite N(0) in the absence of disorder proportional to
H' compared to the H' behavior expected for conventional
superconductors in the same approximation. This prediction
appears to be in accord with recent measurements of the
magnetic-field dependence of the low-temperature specific
heat ' in high-T, materials. However, the short coherence
length of high-T, materials raises some uncertainty about the
detailed applicability of a semiclassical analysis and moti-
vates a fully microscopic study of the same problem. In this
Rapid Communication we report on such a study.

Application of microscopic mean-field theory to inhomo-
geneous states of superconductors gives rise to the

Bogoliubov —de Gennes (BdG) equations. Motivated by the
STM experiments of Hess, numerical solutions of the BdG
equations have been obtained for both continuum ' and
lattice models of a superconductor containing an isolated
vortex. This work has recently been generalized to the case
of isolated vortex in a d-wave superconductor. According
to Volovik, the DOS in the mixed state of a d-wave super-
conductor is dependent on the typical distance between vor-
tices so that for the present study it is necessary to solve the
BdG equations for the vortex-lattice state of a d-wave super-
conductor.

To model decoupled Cu02 layers we consider single-band
Hamiltonians on a two-dimensional (2D) square lattice with
nearest-neighbor hopping and both on-site and nearest-
neighbor interactions:

H=H +H', (1a)

Ho= —g (t,,ct c, +t,;ct c, ) —g pn, , (1b)

VH' = Ug n;~n;1+ —g n; n/
(ij )o-o. '

(1c)

e r.

f ~dr A(r)
EJ (2)

where t is the nearest-neighbor hopping amplitude in zero
field and V XA(r) =h(r). We report results below for two
different models. The "s-wave" model has on-site attraction
U(0, and no nearest-neighbor interaction. For the "d-
wave" model, we set U) 0 and V(0. When the magnetic
field is set to zero the mean-field BCS gap equations are

Here i and j are site labels, the angle brackets in Eq. (1a)
imply the restriction to neighboring sites, n; =c, c; is the
electron number operator on site i, and p, is the chemical
potential. We will assume that the screened magnetic field
inside the superconductor can be taken to be constant; for
high-T, materials this is a good approximation except for
external fields extremely close to H, i. In a one-band lattice
model the magnetic field (perpendicular to the 2D plane)
appears in the hopping amplitudes:
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4', = (ct)crt), (3)

readily solved for either model by using translational invari-
ance on the lattice. For the "s-wave" case the pairing self-
energy in the ordered state is proportional to the order pa-
rameter

ck'-, ,=X u;(k) r;.„—X v;*(k) rk. t

v;(k) r,'-., + X u;*(k) rk J,

(5a)

(5b)

while for the "d-wave" model it is proportional to where u (k) and v (k) are determined by solving the BdG
equations:

where the sum is over the nearest neighbors of site i, repre-
sented by the unit vectors 8=—(8, , 8~) =(~e, , ~eY). (In the
homogeneous zero-field states 4',. and 4", are independent of
i. ) For both models the numerical values of the interaction
parameters have been chosen to give a zero-temperature co-
herence length (estimated from the pair wave function)
-4a, as in high-T, materials. The results reported below
were calculated for the case of a band filling factor
(n)=0.8. For the s-wave model, we set U= —3.5t and
V= 0.0 while for the d-wave model we choose U= 2.1t, and
V= —2.1t. For layer separations and bandwidths appropriate
for models of high-temperature superconductors, the penetra-
tion depths (at T=0) for these models are several hundred
times larger than the coherence lengths so that the models do
indeed describe strongly type-II superconductors.

To study vortex lattice states, we introduce magnetic unit
cells, each containing two superconducting fiux quanta:
4&0=bc/2e. The size of a unit cell is N, a XN~a in general,
where a is the lattice constant. We then define magnetic

Bloch states labeled by a magnetic wave vector k, a site
index i within the magnetic unit cell, and a spin index a. and
denote the corresponding creation and annihilation operators

by c&. and cz; . In mean-field theory these are related to the

quasiparticle creation and annihilation operators by

H (k)

( UF i (k) + VF2 (k)

UFi(k)+VF2(k)~ (u (k)~

H*(—k) / ( v (k) j

/ u.(k) ~

=E (k)
(v (k))

(6)

where H, F» and F2 are NxNYXN~N~ matrices. The off-
diagonal blocks in Eq. (6) are the pairing self-energies and
these can be expressed in terms of quasiparticle amplitudes.
The on-site interaction contribution is diagonal in site indices
with

[F2(k)1 j=(ck;tc k, t—)~/, +a

1 PE (k)= —-g tanh [u,. (k)v, *(k)

+u, (k)v; *(k)]h, ;„b.
Here P = 1/kti T and

PE (k)
[F,(k)];;=—(ck, tc k, t) = —g tanh u, (k) v, *(k),

(7)

while the nearest-neighbor interaction contribution is

if site i+8 and site i are in the same cell;

if site i+ 8' and site i are in different cells,

where N& is the number of sites along 8' direction in a cell.
Equations (6), (7), and (8) constitute a set of self-consistent
equations, whose solutions can be obtained numerically by
iteration.

Typical' self-consistent results for the order parameter of
the d-wave model in the vortex lattice state at T=O are
shown in Fig. 1. The size of the cell is 28a X56a, corre-
sponding to a field of H = 40 /(28a); if we associate a with

the typical Cu-Cu distance in high-T, materials this corre-
sponds to a magnetic field —10 T. The value of the order
parameter at the midpoint between neighboring vortices is

,„(H)=0.063, which may be compared with the value

4 =0.065 obtained at T=O for the Meissner state of the
same model. The magnetic field suppresses superconductiv-
ity everywhere in the system; numerical calculations at
stronger fields are consistent' with upper critical fields

H, 2-100 T for the model we study, as expected from the
zero-temperature coherence length. We remark that the ex-
tended s-wave component of the order parameter, permitted
by symmetry ' ' in the vortex lattice state and possibly of
experimental relevance ' in high-T, materials, is smaller
than the d-wave component by about two orders of magni-
tude for the model parameters we have chosen.

We define the local density of states (LDOS) on site i by

1
N (E)= X [Iu;(k)I'f'(& (k) E)

+Iv, (k)I f'(E (k)+E)],

where f(E) =[exp(pE)+1] ', and N, is the number of the
magnetic cells in the system. N;(E) is proportional to the
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FIG. 1.. The amplitude of a d-wave order parameter 4," (z axis)
in a unit cell for the square lattice solution at T= 0. The size of the
ceH is 28a X 56a (intervortex spacing 28a), corresponding to a field
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differential tunneling conductance ' which is measured in
an STM experiment. We show in Fig. 2 N;(E) at a site mid-

way between two neighboring vortices for both s-wave and
d-wave superconductors at zero field and at several different
finite field strengths. Although at first sight the s-wave and
d-wave cases appear quite similar, closer inspection reveals
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FIG. 3. Quasiparticle LDOS profiles at T= 0 at the center of the
vortex cores are plotted in (a) for the d-wave model and (b) for the
s-wave model. Energies are in units of t and measured from the
Fermi energy.
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FIG. 2. Quasiparticle LDOS profiles at T=O away from vortex
cores for different magnetic fields are plotted in (a) for the d-wave
model and in b f(b) for the s-wave model. H„represents the field
corresponding to the intervortex spacing of na. For typical Cu-Cu
distance in high-T, materials, H28, H26, H24, and H&6 are 9.2, 10.7,
12.5, and 28.1 T r, respectively. The H=O limits are also plotted.
Energies are in units of t and measured from the Fermi energy. The
insets are the spatially averaged DOS N(0). The dotted lines here
are guides for the eye; in the s-wave case N(0) vanishes more
rapidly than H when averaged over intervals smaller than the sepa-
ration between vortex-core bound states energies.

important differences for the density of states near the Fermi
level. Most importantly, the density of states at the Fermi
level, N;(0), is much larger for the d-wave case than for the
s-wave case as predicted by Volovik. (We are unable to solve
the BdG equations at weak enough fields to verify the ex-
pected H behavior, although as seen in the inset our results
are consistent with this prediction. ) It is presumably this den-
sity of states away from the d-wave vortex cores which is
responsible for the enhancement of the low-temperature spe-
cific heat of high-T, superconductors in a field seen by
Moler et al. ' In th e s-wave case, the zero-field gap remains
quite well defined out to fairly strong magnetic-field
strengths although, in contrast with the semiclassical result,
the density of states is not strictly zero at any energy. The
size of the gap decreases with increasing field as expected.
The sharp peaks in zero-field DOS are of different origins.

e peak closest to the Fermi energy is due to superconduc-
tivity while the second peak reflects the Van Hove singularity
in the band structure. These peaks are smeared out in finite
field. In Fig. 3 we show N;(E) for a site at the center of a
vortex core. In both s-wave and d-wave cases, we find lar e
peaks near the Fermi energy, reflecting resonances which
will evolve into quasiparticle bound states in the limit of
isolated vortices. The positions of the peaks are distinctly
different in two cases. In the d-wave model, the LDOS peak
is not as strong and is clearly centered at the Fermi energy. In
the s-wave case two quasiparticle LDOS peaks are visible
and the lowest energy of these is clearly located away from
the Fermi energy. The scale of the separation between
s-wave bound-state peaks is -0.2t, in accord with expecta-
tions based on the size of the gap and the bandwidth. For
these short coherence length models, the separation between
quasiparticle bound states is large enough to be resolved' so
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that low-temperature STM experiments would see a double-

peak structure in high-T, materials if they had s-wave sym-
metry, rather than the zero-bias peak observed in conven-
tional superconductors.
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