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Onset of superconductivity in the antiferromagnetically ordered state
of single-crystal DyNizBzC
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Temperature-dependent static magnetization, ac magnetic susceptibility, and electrical-resistivity measure-
ments of single-crystal DyNizB&C reveal bulk superconductivity below T, =(6. 2~01) K. This T, is well

below the Neel temperature Tz= 10.3 K. DyNizBzC is the first RNi2BzC compound with T,~Tz. The upper
critical magnetic field H, z(T) increases approximately linearly from zero at 6.2 K to -5 kG at 2 K.

The interplay between superconductivity and local-
moment magnetism has been vigorously studied since the
late 1950s.' In the 1970s the discovery of two families of
magnetic superconductors, RMo6(S, Se)s and RRh4B4 (R
=rare earth), led to a detailed study of the interaction be-
tween the magnetic sublattice and the superconducting
electrons. ' Recently the RNizBzC family of magnetic super-
conductors was discovered. For R = Lu, Y, Tm, Er, and Ho
the superconducting transition temperatures for single-crystal
samples are T,= 16.0, 15.0, 10.8, 10.5, and 8.5 K,
respectively. Superconductivity coexists with antiferro-
magnetic (AF) order for R= Tm, Er, and Ho for tempera-
tures below the Ne, el temperatures T&= 1.5, 5.85, and 6.0 K,
respectively. ' ' Similar values of T, and Tz have been
found for polycrystalline samples. ' In virtually all known
magnetic superconductors, when there is a coexistence of
AF ordering and superconductivity, T,~Tz. The only local-
moment systems that have T,~T& are solid solutions such
as the R(Ir,Rhi, )4B4 system where T&= 2.7 K and

T,=1.4 K for R=Ho andx=0. 7. ' This reversal of T, and

T& only occurs for 0.6~x(0.8 in this alloy. Compounds
exhibiting T,(T& are expected to be rare since the stronger
the conduction electron-local moment coupling (such as
would be required for a higher T&), the greater the antici-
pated suppression of T, through magnetic pair breaking. In
this paper we report the discovery of superconductivity in
single-crystal DyNiqBzC below a T,=(6. 2~01) K that is
well below the T&= 10.3 K. This is the first such member of
the RNizBzC family with T,(T~.

Single crystals of DyNizBzC were grown from NizB Aux
using high-purity elements: B (99.9%), Ni (99.99%), C
(99.99%), and Ames Lab Dy (99.99%).The crystals grow in
the form of plates with the crystallographic c axis perpen-
dicular to the largest plate surface. The static magnetization
M was measured using a Quantum Design (SQUID) magne-
tometer and the ac susceptibility y„was measured using a
Lakeshore ac magnetometer. The single crystal used for the
M and y„measurements had approximate dimensions of
2.5X2.5X0.7 mm . The four-lead electrical resistivity p, b
was measured on a platelike crystal with the current Bowing
in the basal ab plane using a Linear Research, LR 400, ac
resistance bridge operating at 15.9 Hz.

Figure 1 shows the powder x-ray-diffraction pattern of a
crushed single crystal of DyNizBzC. The diffraction
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FIG. 1. Powder x-ray-diffraction pattern of a crushed
DyNi282C single crystal.

peaks index well to the tetragonal unit cell reported for
DyNizBzC with lattice parameters a = 3.534 A and
c= 10.484 A. The only peak that is not indexed to
DyNizBzC is the weak peak at 20=45.85, attributed to the
[211]peak of the NizB flux. '

Figure 2 displays the temperature-dependent magnetic
susceptibility y(T) of DyNizBzC with a magnetic field H= 1
kG applied parallel (HIIc) and perpendicular (HJ c) to the c
axis. Magnetic neutron diffraction measurements indicate
that the sharp feature at T&=10.3 K in Fig. 2 should be
attributed to the onset of AF order. The 1arge anisotropy seen
between HIIc and HL c at low T is a feature common to the
RNizBzC materials for R =Er, Ho, and Tb. ' ' The inset to
Fig. 2 shows y '(T) for both directions of applied field as
well as for the polycrystalline ~ve~~ge of the y~~, and y«
data: y»l„=yll, /3+2'~, /3. The y~„r(T) data can be fitted
by a Curie-Weiss law y=C/(T 8) for 20(—T(350 K, giv-
ing an effective moment p, ,rt= 9.85ps and 8= (1~ 2) K.
This value of p, ,& is slightly lower than the theoretical value
of 10.63ps for the J=15/2 Hund's rule ground state of
Dy +. The anisotropic y(T) data can also be fitted by a
Curie-Weiss form for HIIc for 230 K (T&375 K giving
p,,z= 10.4p,a and 0= —82 K and for HL c for 200
K&T(325 K giving p, ,&=9.8p,z and 0=25 K.

Figure 3(a) shows p, b(T) of a DyNizBzC crystal. There is
a sharp 1oss of scattering associated with the AF transition at
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FIG. 2. Anisotropic magnetic susceptibility y vs temperature T
for DyNizBzC, with Hl. c (squares) and HIIc (circles) and H= 1
kG. Inset: Anisotropic (and polycrystalline average) y vs T
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FIG. 3. Electrical resistivity of DyNi2B2C in the ab plane vs
temperature T: (a) H=O and T(15 K and (b) HLc and T(7 K.

T&=10.3 K, followed by a superconducting transition with
an onset at 6.4 K and zero resistivity at 6.0 K. We find

p, b(300 K) = 55 p, Q cm. The residual resistivity ratio is

p, b(300 K)/p, „(7 K) = 27 indicating that the crystal has a
high degree of perfection. Figure 3(b) shows p, b(H, T) for
2 K& T~ 7 K and HJ c. For these applied fields
(H~ 5 kG), T~ is only weakly field dependent, decreasing to
T~= 10.0 K for H = 5 kG (not shown). As can be seen from
Fig. 3(b), T, is suppressed and the width of the supercon-
ducting transition is increased with increasing H.

Figure 4 shows the temperature-dependent upper critical
magnetic field H, z(T) derived from the p, b(H, T) data in
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FIG. 4. Upper critical magnetic field 0,2 vs temperature T for
DyNizBzC with HIIc. The circles, squares, and triangles show

H, z(T) data determined from Fig. 3(b) by using the zero-resistivity,
midpoint, and resistive onset, respectively, as the criterion for de-
termining T,(H)

Fig. 3(b). H, z(T) increases nearly linearly with decreasing T
from 10 G [just below T,(H=0)] to -5 kG near 2 K. No
local minimum or other structure is seen in H, z(T), which is
consistent with T,~T&. This is in contrast to the local ex-
trema in H, z(T) seen for TmNizBzC, ' ErNizBzC, ' and
HoNizBzC. ' The value of IdH, z/dTIIr =(1.2~0.2) kG/K

is less than the values of (2.8~ 0.2) and (2.6~ 0.2) kG/K for
TmNizBzC (Ref. 5) and ErNizBzC (Ref. 6), respectively.

Figure 5(a) shows the low-temperature static volume
magnetization M of DyNizBzC for HIIc. From Fig. 2, for
this field direction there is only a weak paramagnetic contri-
bution from the Dy sublattice. In Fig. 5(a), the onset of a
superconducting magnetization is seen at 6.1 K which be-
comes nearly independent of T below 4 K. At 2 K the flux
expulsion magnetization is 10% of the ideal value of H/47r
and the shielding fraction is almost 300%. If the crystal is
fully superconducting, the latter value indicates a demagne-
tization factor of 0.66, consistent with that calculated (0.68)
for an ellipsoid of revolution with the sample dimensions.

To further confirm that the superconductivity in

DyNizBzC is a bulk rather than a surface effect, the M(T) of
a powder sample made by crushing a single crystal of
DyNizBzC was measured [Fig. 5(b)]. T& is now seen at
=10.2 K. In addition, a clear onset of a superconducting
transition is seen at 5.9 K (see inset). Due to the contribution
from the paramagnetic Dy sublattice, the measured magneti-
zation does not become diamagnetic until somewhat lower
temperatures. At 2 K the diamagnetic M/H for the field-
cooled measurement is 60% of I/4m. and the zero-field-
cooled shielding fraction is 140% which is close to the value
(150%) anticipated from the powder average demagnetiza-
tion factor. The polycrystalline data in Fig. 5(b) and the
single-crystal data in Fig. 5(a) show a markedly different
temperature dependence of the diamagnetism. For the poly-
crystalline sample there is an onset of superconductivity at
5.9 K followed by a shallow increase of the diamagnetic
magnetization on cooling to 4 K, below which there is a
rapid increase of diamagnetism. For the single-crystal
sample there is a much more uniform and rapid increase of
diamagnetism on cooling below 6.1 K which is nearly com-
plete by 4 K.
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FIG. 6. Neel temperature T~ (squares) and superconducting
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(g~ —1) J(J+1) for DyNi282C and other RNi282C (R=Gd, Tb,
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Figure 5(c) shows the ac susceptibility y„ for H„~~c taken
on the same single-crystal sample that was used to provide
the data shown in Fig. 5(a). The real part of y„shows a
clear onset of diamagnetism below 6.3 K. In addition, below
6.3 K there is an increase in the imaginary part. Both of these
features are consistent with a bulk T, of 6.3 K.

FIG. 5. Temperature-dependent magnetization M of
DyNi2B2C: (a) static M with Hiic = 10 G: zero-field-cooled (ZFC)
data (circles) and field-cooled/warming (FCW) data (triangles); (b)
static M of a powdered single crystal with 8=10 6: ZFC data
(circles) and FCW data (triangles); and (c) real (y', diamonds) and
imaginary (g", circles) parts of the ac susceptibility g„of the same
single crystal used in (a) with H„=0.125 G at a frequency of 125
Hz.

Figures 2—5 clearly indicate the existence of a bulk anti-
ferromagnetic transition at T&= 10.3 K and a bulk supercon-
ducting transition at T,= (6.2~ 0.1) K in single-crystal
DyNizBzC. The latter result is in convict with an earlier
report on a polycrystalline sample of DyNizBzC that
showed no superconductivity above 2 K. One possible expla-
nation for this difference is that there may be some residual
strain in polycrystalline samples leading to an extrinsic sup-
pression of T, . As shown in Figs. 5(a) and 5(b), a broaden-
ing and suppression of the majority of the superconducting
transition occurred in our powdered single-crystal sample.
Another conspicuous difference between the polycrystalline
and single-crystal samples is the value of the residual resis-
tivity pII at T&T, : for our single-crystal sample po(7 K)
=2.2 p, Q cm (Fig. 3), while for the polycrystalline sample

pII(7 K))20 pA cm. This difference in po may indicate that
DyNi2B2C shows a variability in composition and/or in the
degree of crystallographic ordering; such variabilities could
strongly affect T, as in A-15 compounds such as Nb3Ge.

With T,(T&, the question of whether the T, of
DyNizBzC follows de Gennes scaling is a salient one. Figure
6 shows the T& and T, values for single crystals of
RNi2B2C (R= Gd-Tb, Lu and Y) ' ""' ' vs the
de Gennes factor (gJ —1) J(1+1), where gJ is the Lande
factor and J is the total angular momentum of the R +

Hund's rule ground state. Good overall de Gennes scaling is
seen for the whole heavy rare-earth series for both T, and
T&. This indicates that both T& and the suppression of T,
originate from the same conduction electron-local moment
exchange interaction. In particular, our T, value for single-
crystal DyNizBzC is on the order of that expected from the
variation of T, vs de Gennes factor for the other supercon-
ducting members.

In summary, temperature-dependent electrical resistivity,
static magnetization, and ac susceptibility measurements
have revealed the onset of bulk superconductivity in single-
crystal DyNi2B2C at T,=(6.2 ~10) K, which is signifi-
cantly lower than the antiferromagnetic ordering (Neel) tem-
perature at T&= 10.3 K. DyNizBzC is the first member of the
RNizBzC series to exhibit T,~T& and also appears to be a
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crystallographically ordered compound outside of the heavy-
fermion family to show this order of transition temperatures.
While there is good overall de Gennes scaling of T, and

T& across the RNi282C ser es, it is still an open question as
to how well de Gennes scaling will work for a series of
materials where T, is lowered through T& in a more continu-
ous manner. Since T,&T& for DyNi2B2C and T,&Tz for
(Ho, Er,Tm)Ni2B2C, a study of the crossover of T, and TJv in,

e.g., (Ho, „Dy„)Ni2B2C solid solutions should be very in
teresting.
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