PHYSICAL REVIE% 8 VOLUME 52, NUMBER 6 ¹ AUGUST 1995-II

Onset of superconductivity in the antiferromagnetically ordered state of single-crystal $DyNi₂B₂C$

B. K. Cho, P. C. Canfield, and D. C. Johnston

Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011

(Received 15 March 1995)

Temperature-dependent static magnetization, ac magnetic susceptibility, and electrical-resistivity measurements of single-crystal DyNi₂B₂C reveal bulk superconductivity below $T_c=(6.2\pm0.1)$ K. This T_c is well below the Néel temperature $T_N = 10.3$ K. DyNi₂B₂C is the first RNi₂B₂C compound with $T_c < T_N$. The upper critical magnetic field $H_{c2}(T)$ increases approximately linearly from zero at 6.2 K to \sim 5 kG at 2 K.

The interplay between superconductivity and localmoment magnetism has been vigorously studied since the late 1950s.' In the 1970s the discovery of two families of magnetic superconductors, $R\text{Mo}_6(S, Se)_{8}$ and $R\text{Rh}_4B_4$ (R =rare earth), led to a detailed study of the interaction between the magnetic sublattice and the superconducting electrons.¹ Recently the $RNi₂B₂C$ family of magnetic superconductors was discovered.² For $R = Lu$, Y, Tm, Er, and Ho the superconducting transition temperatures for single-crystal samples are T_c = 16.0, 15.0, 10.8, 10.5, and 8.5 K, respectively.^{$3-7$} Superconductivity coexists with antiferromagnetic (AF) order for $R = Tm$, Er, and Ho for temperatures below the Néel temperatures T_N = 1.5, 5.85, and 6.0 K, respectively.^{4-7,9,10} Similar values of T_c and T_N have been found for polycrystalline samples.^{2,8} In virtually all known magnetic superconductors, 11 when there is a coexistence of AF ordering and superconductivity, $T_c > T_N$. The only localmoment systems that have $T_c < T_N$ are solid solutions such as the $R(\text{Ir}_x \text{Rh}_{1-x})_4 \text{B}_4$ system where $T_N = 2.7$ K and as the $R(\text{Ir}_x \text{Rh}_{1-x})_4 \text{B}_4$ system
 $T_c = 1.4 \text{ K}$ for $R = \text{Ho}$ and $x = 0.7$.^{1,1} ² This reversal of T_c and T_N only occurs for 0.6<x<0.8 in this alloy. Compounds exhibiting $T_c \leq T_N$ are expected to be rare since the stronger the conduction electron-local moment coupling (such as would be required for a higher T_N), the greater the anticipated suppression of T_c through magnetic pair breaking.¹ In this paper we report the discovery of superconductivity in single-crystal DyNi₂B₂C below a $T_c = (6.2 \pm 0.1)$ K that is well below the T_N = 10.3 K. This is the first such member of the $RNi₂B₂C$ family with $T_c\leq T_N$.

Single crystals of $DyNi₂B₂C$ were grown from $Ni₂B$ flux³ using high-purity elements: B (99.9%), Ni (99.99%), C (99.99%) , and Ames Lab Dy (99.99%) . The crystals grow in the form of plates with the crystallographic c axis perpendicular to the largest plate surface. The static magnetization M was measured using a Quantum Design (SQUID) magnetometer and the ac susceptibility χ_{ac} was measured using a Lakeshore ac magnetometer. The single crystal used for the M and χ_{ac} measurements had approximate dimensions of $2.5 \times 2.5 \times 0.7$ mm³. The four-lead electrical resistivity ρ_{ab} was measured on a platelike crystal with the current flowing in the basal ab plane using a Linear Research, LR 400, ac resistance bridge operating at 15.9 Hz.

Figure 1 shows the powder x-ray-diffraction pattern of a crushed single crystal of $DyNi₂B₂C$. The diffraction peaks index well to the tetragonal unit cell reported² for $DyNi₂B₂C$ with lattice parameters $a = 3.534$ Å and $c= 10.484$ Å. The only peak that is not indexed to DyNi₂B₂C is the weak peak at $2\theta = 45.85^{\circ}$, attributed to the [211] peak of the $Ni₂B flux.¹³$

Figure 2 displays the temperature-dependent magnetic susceptibility $\chi(T)$ of DyNi₂B₂C with a magnetic field $H=1$ kG applied parallel ($\mathbf{H} || c$) and perpendicular ($\mathbf{H} \perp c$) to the c axis. Magnetic neutron diffraction measurements 14 indicate that the sharp feature at $T_N=10.3$ K in Fig. 2 should be attributed to the onset of AF order. The 1arge anisotropy seen between $H||c$ and $H\perp c$ at low T is a feature common to the $RNi₂B₂C$ materials for $R = Er$, Ho, and Tb.^{6,7,15} The inset to Fig. 2 shows $\chi^{-1}(T)$ for both directions of applied field as well as for the polycrystalline average of the $\chi_{\parallel c}$ and $\chi_{\perp c}$ data: $\chi_{\text{poly}} = \chi_{\parallel c}/3 + 2\chi_{\perp c}/3$. The $\chi_{\text{poly}}(T)$ data can be fitted by a Curie-Weiss law $\chi = C/(T - \theta)$ for 20<7<350 K, giving an effective moment $\mu_{\text{eff}} = 9.85 \mu_B$ and $\theta = (1 \pm 2)$ K. This value of μ eff is slightly lower than the theoretical value of $10.63\mu_B$ for the $J=15/2$ Hund's rule ground state of Dy³⁺. The anisotropic $\chi(T)$ data can also be fitted by a Curie-Weiss form for H||c for 230 K < T < 375 K giving $\mu_{\text{eff}} = 10.4 \mu_B$ and $\theta = -82$ K and for HL c for 200 $K < T < 325$ K giving $\mu_{\text{eff}} = 9.8 \mu_B$ and $\theta = 25$ K.

Figure 3(a) shows $\rho_{ab}(T)$ of a DyNi₂B₂C crystal. There is a sharp loss of scattering associated with the AF transition at

FIG. 1. Powder x-ray-diffraction pattern of a crushed $DyNi₂B₂C$ single crystal.

FIG. 2. Anisotropic magnetic susceptibility χ vs temperature T for DyNi₂B₂C, with $H\perp c$ (squares) and $H\parallel c$ (circles) and $H=1$ kG. Inset: Anisotropic (and polycrystalline average) χ^{-1} vs T.

 T_N =10.3 K, followed by a superconducting transition with an onset at 6.4 K and zero resistivity at 6.0 K. We find $\rho_{ab}(300 \text{ K}) = 55 \mu \Omega \text{ cm}$. The residual resistivity ratio is ρ_{ab} (300 K)/ ρ_{ab} (7 K) = 27 indicating that the crystal has a high degree of perfection. Figure 3(b) shows $\rho_{ab}(H, T)$ for 2 K \lt 7 \lt 7 K and H \perp c. For these applied fields $(H \le 5$ kG), T_N is only weakly field dependent, decreasing to T_N = 10.0 K for $H = 5$ kG (not shown). As can be seen from Fig. 3(b), T_c is suppressed and the width of the superconducting transition is increased with increasing H .

Figure 4 shows the temperature-dependent upper critical magnetic field $H_{c2}(T)$ derived from the $\rho_{ab}(H, T)$ data in

FIG. 3. Electrical resistivity of $DvNi₂B₂C$ in the *ab* plane vs temperature T: (a) $H=0$ and $T<15$ K and (b) $H\perp c$ and $T<7$ K.

FIG. 4. Upper critical magnetic field H_{c2} vs temperature T for $DyNi₂B₂C$ with $H||c$. The circles, squares, and triangles show $H_{c2}(T)$ data determined from Fig. 3(b) by using the zero-resistivity, midpoint, and resistive onset, respectively, as the criterion for determining $T_c(H)$.

Fig. 3(b). $H_{c2}(T)$ increases nearly linearly with decreasing T from 10 G [just below $T_c(H=0)$] to \sim 5 kG near 2 K. No local minimum or other structure is seen in $H_{c2}(T)$, which is consistent with $T_c < T_N$. This is in contrast to the local exrema in $H_{c2}(T)$ seen for $TmNi₂B₂C^{5,8}$ ErNi₂B₂C,^{6,8} and
HoNi₂B₂C.^{7,8} The value of $||dH_{c2}/dT||_{T_c} = (1.2 \pm 0.2)$ kG/K is less than the values of (2.8 ± 0.2) and (2.6 ± 0.2) kG/K for $TmNi₂B₂C$ (Ref. 5) and $ErNi₂B₂C$ (Ref. 6), respectively.

Figure 5(a) shows the low-temperature static volume magnetization M of DyNi₂B₂C for H||c. From Fig. 2, for this field direction there is only a weak paramagnetic contribution from the Dy sublattice. In Fig. $5(a)$, the onset of a superconducting magnetization is seen at 6.1 K which becomes nearly independent of T below 4 K. At 2 K the flux expulsion magnetization is 10% of the ideal value of $H/4\pi$ and the shielding fraction is almost 300%. If the crystal is fully superconducting, the latter value indicates a demagnetization factor of 0.66, consistent with that calculated (0.68) for an ellipsoid of revolution with the sample dimensions.

To further confirm that the superconductivity in $DyNi₂B₂C$ is a bulk rather than a surface effect, the $M(T)$ of a powder sample made by crushing a single crystal of $DyNi₂B₂C$ was measured [Fig. 5(b)]. T_N is now seen at \approx 10.2 K. In addition, a clear onset of a superconducting transition is seen at 5.9 K (see inset). Due to the contribution from the paramagnetic Dy sublattice, the measured magnetization does not become diamagnetic until somewhat lower temperatures. At 2 K the diamagnetic M/H for the fieldcooled measurement is 60% of $1/4\pi$ and the zero-fieldcooled shielding fraction is 140% which is close to the value (150%) anticipated from the powder average demagnetization factor. The polycrystalline data in Fig. 5(b) and the single-crystal data in Fig. 5(a) show a markedly different temperature dependence of the diamagnetism. For the polycrystalline sample there is an onset of superconductivity at 5.9 K followed by a shallow increase of the diamagnetic magnetization on cooling to 4 K, below which there is a rapid increase of diamagnetism. For the single-crystal sample there is a much more uniform and rapid increase of diamagnetism on cooling below 6.1 K which is nearly complete by 4 K.

FIG. 5. Temperature-dependent magnetization M of DyNi₂B₂C: (a) static M with $H||c = 10$ G: zero-field-cooled (ZFC) data (circles) and field-cooled/warming (FCW) data (triangles); (b) static M of a powdered single crystal with $H=10$ G: ZFC data (circles) and FCW data (triangles); and (c) real $(\chi'$, diamonds) and imaginary (χ'' , circles) parts of the ac susceptibility χ_{ac} of the same single crystal used in (a) with $H_{ac} = 0.125$ G at a frequency of 125 Hz.

Figure 5(c) shows the ac susceptibility χ_{ac} for $H_{ac}||c$ taken on the same single-crystal sample that was used to provide the data shown in Fig. 5(a). The real part of χ _{ac} shows a clear onset of diamagnetism below 6.3 K. In addition, below 6.3 K there is an increase in the imaginary part. Both of these features are consistent with a bulk T_c of 6.3 K.

FIG. 6. Néel temperature T_N (squares) and superconducting transition temperature T_c (triangles) vs de Gennes factor $(g_J-1)^2 J(J+1)$ for DyNi₂B₂C and other RNi₂B₂C (R=Gd, Tb, Ho, Er, Tm, Lu, and Y) (Refs. 3—7,9,10,14,15,17) single crystals.

Figures 2—5 clearly indicate the existence of ^a bulk antiferromagnetic transition at $T_N = 10.3$ K and a bulk superconducting transition at $T_c = (6.2 \pm 0.1)$ K in single-crystal $DyNi₂B₂C$. The latter result is in conflict with an earlier report⁸ on a polycrystalline sample of $DyNi₂B₂C$ that showed no superconductivity above 2 K. One possible explanation for this difference is that there may be some residual strain in polycrystalline samples leading to an extrinsic suppression of T_c . As shown in Figs. 5(a) and 5(b), a broadening and suppression of the majority of the superconducting transition occurred in our powdered single-crystal sample. Another conspicuous difference between the polycrystalline and single-crystal samples is the value of the residual resistivity ρ_0 at $T>T_c$: for our single-crystal sample $\rho_0(7 K)$ =2.2 $\mu \Omega$ cm (Fig. 3), while for the polycrystalline sample⁸ $\rho_0(7 \text{ K})$ > 20 $\mu\Omega$ cm. This difference in ρ_0 may indicate that $DyNi₂B₂C$ shows a variability in composition and/or in the degree of crystallographic ordering; such variabilities could strongly affect T_c as in A-15 compounds such as Nb₃Ge.¹⁶

With $T_c < T_N$, the question of whether the T_c of $DyNi₂B₂C$ follows de Gennes scaling is a salient one. Figure 5 shows the T_N and T_c values for single crystals of 5 shows the T_N and T_c values for single crystals of RNi_2B_2C ($R = Gd-Tb$, Lu, and Y)^{3-7,10,11,14,15,17} vs the de Gennes factor $(g_J-1)^2 J(J+1)$, where g_J is the Landé factor and J is the total angular momentum of the R^{3+} Hund's rule ground state. Good overall de Gennes scaling is seen for the whole heavy rare-earth series for both T_c and T_N . This indicates that both T_N and the suppression of T_c originate from the same conduction electron-local moment exchange interaction. In particular, our T_c value for singlecrystal $DyNi₂B₂C$ is on the order of that expected from the variation of T_c vs de Gennes factor for the other superconducting members.

In summary, temperature-dependent electrical resistivity, static magnetization, and ac susceptibility measurements have revealed the onset of bulk superconductivity in singlecrystal DyNi₂B₂C at $T_c = (6.2 \pm 0.1)$ K, which is significantly lower than the antiferromagnetic ordering (Néel) temperature at T_N = 10.3 K. DyNi₂B₂C is the first member of the $RNi₂B₂C$ series to exhibit $T_c < T_N$ and also appears to be a crystallographically ordered compound outside of the heavyfermion family to show this order of transition temperatures. While there is good overall de Gennes scaling of T_c and T_N across the $RNi₂B₂C$ series, it is still an open question as to how well de Gennes scaling will work for a series of materials where T_c is lowered through T_N in a more continuous manner. Since $T_c < T_N$ for DyNi₂B₂C and $T_c > T_N$ for $(Ho, Er, Tm)Ni₂B₂C$, a study of the crossover of T_c and T_N in,

- ¹ For a review of magnetic superconductors as of 1990, see Φ . Fischer, in Ferromagnetic Materials, edited by K. H. J. Buschow and E. P. Wohlfarth (North-Holland, Amsterdam, 1990), Vol. 5, p. 465.
- ²R. J. Cava et al., Nature (London) 367, 252 (1994); T. Siegrist et al., ibid. 367, 254 (1994).
- 3^3 M. Xu et al., Physica C 227, 321 (1994); M. Xu et al., Physica C 235-240, 2533 (1995).
- ⁴R. Movshovich et al., Physica C 227, 381 (1994).
- ⁵B. K. Cho, M. Xu, P. C. Canfield, L. L. Miller, and D. C. Johnston, Phys. Rev. 8 52, 3676 (1995).
- B. K. Cho, P. C, Canfield, L. L. Miller, D. C. Johnston, W. P. Beyermann, and A. Yatskar, Phys. Rev. 8 52, 3684 (1995).
- ⁷P. C. Canfield et al., Physica C 230 , 397 (1994).
- 8 H. Eisaki et al., Phys. Rev. B 50, 647 (1994).
- 9^9 A. I. Goldman et al., Phys. Rev. B 50, 9668 (1994).
- 10 J. Zarestky et al., Phys. Rev. B 51, 678 (1995).

e.g., $(Ho_{1-x}Dy_x)Ni_2B_2C$ solid solutions should be very in teresting.

The authors are grateful to the Ames Laboratory Materials Preparation Center for supplying the high-purity dysprosium metal. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences.

- 11 In the case of heavy-fermion superconductors, the moments remaining on the ordering $4f$ sites at low T are greatly reduced through hybridization with the conduction electrons. This class of magnetic superconductors is considered to be fundamentally different from those discussed here.
- ¹²H. C. Ku, F. Acker, and B. T. Matthias, Phys. Lett. **76A**, 399 1980); L. D. Woolf et al., J. Low. Temp. Phys. 51, 117 (1983).
- ¹³JCPDS-International Center for Diffraction, Powder Data File Card Number 25-576.
- ¹⁴P. Dervenagas, J. Zarestky, C. Stassis, A. I. Goldman, P. C. Canfield, and B. K. Cho, Physica 8 212, ¹ (1995).
- 5 B. K. Cho, P. C. Canfield, and D. C. Johnston (unpublished)
- ⁵J. R. Gavaler, Appl. Phys. Lett. 23, 480 (1973); A. R. Sweedler, D. G. Schweitzer, and G. W. Webb, Phys. Rev. Lett. 33, 168 (1974).
- ¹⁷P. C. Canfield, B. K. Cho, and K. W. Dennis, Physica B (to be published).