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Monte Carlo study of the Heisenberg antiferromagnet on the triangular lattice
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We report a Monte Carlo study of the classical antiferromagnetic Heisenberg model on the triangular lattice.
The free-energy cost for the formation of free vortices is obtained from a vorticity modulus. Evidence of a
Kosterlitz-Thouless type of defect-mediated phase transition at a finite temperature is found.

I. INTRODUCTION

The classical Heisenberg model on the two-dimensional
triangular lattice with antiferromagnetic nearest-neighbor
coupling J is frustrated. As a result, a collinear arrangement
of the spins at low temperature is not the lowest energy con-
figuration. There is, however, an ordered ground state which
has three sublattices with a noncollinear arrangement of the
spins on each triangle. The spins lie in a plane at an angle of
120 with respect to one another corresponding to one of the
two inequivalent ordering wave vectors Q = ( ~ 4 m/3, 0) .
The local order parameter is similar to a rigid body with
three principal axes and belongs to the SO(3) rotation
group. ' This enlarged symmetry of the order parameter sug-
gests that this model belongs to a different universality
class than the corresponding model on bipartite lattices
where there is no frustration and the order parameter corre-
sponds to a unit vector.

The SO(3) symmetry of the order parameter also allows
for the existence of a stable topological (vortex) defect. '

These defects have an energy which is logarithmic in the size
of the system at low temperatures and thus the question of
whether a Kosterlitz-Thouless defect unbinding transition
can occur in this system at a finite temperature should be
considered.

Previous work on this possibility has been inconclusive.
Kawamura and Miyashita' first suggested the possibility of
such a transition and studied relatively small system sizes
using Monte Carlo methods. Their results suggested a finite
temperature phase transition at T=0.31J accompanied by a
rapid appearance of free vortices above this temperature. Az-
aria et al. used a continuum version of the model and
employed renormalization-group (RG) techniques to study
the pair-correlation length and the effective long-wavelength
spin stiffness at low T. They did not include any vortex
degrees of freedom in their calculations and their results sug-
gested a phase transition at T, =O with an enlarged SO(3)
symmetry. Wintel et al. have recently studied the effect of
vortex-spin wave interactions within the continuum model
and they suggest that there should be a sharp crossover in the
correlation length at a finite temperature. However, their re-
sults were restricted to vortex separations smaller than the
spin-wave correlation length and the possibility of a true
transition accompanied by the abrupt appearance of free vor-
tices remains unresolved. Southern and Young have also
used Monte Carlo and high-temperature methods to study the

model. The two-spin correlation length and the structure fac-
tor S(Q) were calculated and both exhibited a rapid cross-
over in behavior at about T=0.32J which may be related to
the disappearance of free vortices. However, the results for
the spin stiffness were in excellent agreement with the low T
RG which does not predict a finite T transition.

In the present work, we study the free-energy cost of vor-
tex formation in the system at low temperatures. We define a
vorticity modulus in terms of an equilibrium correlation
function. Our results indicate that a Kosterlitz-Thouless (KT)
type of transition may indeed occur at a finite value of T.

II. MODEL

The Hamiltonian of the system is given by

H=+Sg S,"S,,
i&j

where S; represents a classical three-component spin of unit
.magnitude located at each site i of a triangular lattice of L
sites and the interactions are restricted to nearest-neighbor
pairs. Domain-wall arguments' applied to both the Heisen-
berg ferromagnet and antiferromagnet on bipartite lattices in
two dimensions indicate that there is no phase transition in
this model at finite temperatures. This is due to the fact that
transverse fluctuations of the order parameter destroy long-
ranged order at all finite temperatures.

Information about the rigidity of the order parameter
against fluctuations can be obtained from the spin-wave stiff-
ness coefficient. The spin stiffness (helicity) tensor is given
by the second derivative of the free energy ' ' with respect to
the twist angle about a particular direction in spin space. In
the present case of the antiferromagnet on the triangular lat-
tice, we choose two orthogonal directions n&, n2 in the plane
of the spins and a third direction n3 perpendicular to the
plane. We apply a twist about each of these axes and the
corresponding stiffness is given by

2J
p = g (e;,"u) (S~S~+S)S~y)

3L ~&j

2J2 ( g (e;,"u)[S~S,~—S~S~], (2)
3L T (~~j j

0163-1829/95/52(6)/3836(4)/$06. 00 52 R3836 1995 The American Physical Society



52 MONTE CARLO STUDY OF THE HEISENBERG R3837

where u= 1,2,3 and u, P, y are to be taken in cyclic order.

S,. denotes the component of the spin at site i in the n
direction, e;, are unit vectors along neighboring bonds, and
u is the direction of the twist in the lattice. All stiffnesses
have been normalized by the unit-cell area. As mentioned in
the previous section, a Monte Carlo method has been used
to calculate these stiffness coefficients at low T and the re-
sults are in excellent agreement with the two-loop RG
calculations. The spin stiffness of the Heisenberg antiferro-
magnet decreases at large length scales and there is no long-
ranged sublattice order at finite temperature.

In the same way that the spin stiffness is a measure of the
response of the spin system to a twist over the length of the
lattice, a vorticity can be defined as the response of the spin
system to an imposed twist about a given axis n in spin
space along a closed path which encloses a vortex core. This
is essentially the response of the system to an isolated vortex
and can be calculated as the second derivative of the free
energy with respect to the strength of the vortex, or winding
number m, evaluated at m =0. We obtain the following ex-
pression:
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where r; is the distance of site i from the vortex core and

is tangent to the circular path in the lattice passing
through the site i and enclosing the vortex. Here u, p, y are
defined in the same way as for the stiffnesses and indicate
the axis of rotation of the vortex.

The V contain both a core contribution and a part which
is proportional to ln(L/a). By comparing different lattice
sizes L we can extract the vorticity modulus v defined as
follows:

V =C +u ln(L/a). (4)

Kawamura and Kikuchi' have also recently calculated a
vorticity modulus for two ferromagnetic models. They calcu-
late the free energies for different boundary conditions and
subtract them to obtain the part which varies as ln(L/a). Our
approach does not require any change in boundary condi-
tions and is applied directly to the antiferromagnetic model.

III. RESULTS

In this section we describe our Monte Carlo results for the
vorticity of the Heisenberg antiferromagnet. We have used a
single spin-Aip heat bath algorithm to update the spin di-
rections at each Monte Carlo step and all thermal averages
are replaced by time averages. For the largest value of the
system size L = 192 studied we discard the first 10 steps and
perform averages over the next 10 steps. Figure 1 shows the
raw data obtained for the average of the three vorticities,
V=X ~V /3, as a function of T/J for various system sizes
L. At low T, the free-energy cost for creating isolated vor-
tices increases logarithmically with L but, as T increases, the
curves all appear to cross at a unique value of the tempera-

FIG. 1. Raw data obtained using Eq. (3) for the average of the

three vorticities for different system sizes L as a function of T/J.

ture near T-0.305~0.005J. The behavior suggests that an
abrupt change in the rigidity of the system against the for-
mation of isolated vortices occurs at this temperature.

The raw data contains a contribution which is independent
of the size of the system as well as a contribution propor-
tional to lnL. The size independent part is a vortex core
contribution and the coefficient of the lnL term is defined to
be the vorticity modulus and can be obtained by using the
results obtained for systems of size L

&
and L2 as follows:

v.(I.,) —v.(I,)
ln(L 2 /L t )

Figure 2 shows the vorticity moduli U obtained using the
method above for various choices of system sizes L&,L2
plotted as a function of T/J. At zero temperature, the moduli
approach the values U3=2m, U&=U2= vr and all decrease
as T increases until about T-0.3J where they all become
equal and then abruptly drop to zero. Kawamura and
Miyashita' identified two basic types of vortices for this
model and our results suggest that both types of vortex be-
come free at the same temperature.

The average of the three vorticity moduli, u(T), obtained
from comparing different sizes is shown in Fig. 3 as a func-
tion of T/J. A naive application of the Kosterlitz-Thouless
theory of vortex unbinding would predict that a transition
occurs when the following line

u(T) 8 T

u(0) 3' J
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intersects the calculated (renormalized) vorticity. This rela-
tion would describe the universal jump in the vorticity at the
transition if it behaves in the same way as the spin stiffness
in the XY model on the triangular lattice. This line is repre-
sented by the solid curve in Fig. 3 and the two curves inter-

sect at about T=0.305~0.005J. The results suggest that a
KT type of transition may indeed occur in the Heisenberg
antiferromagnet and that it belongs to the XY universality
class. However, the details of the transition differ from the
XY model in that the vorticity has a jump but the spin stiff-
ness does not. Hence it appears that we must distinguish
between these two quantities in the Heisenberg antiferromag-
net. We have also calculated' both the spin stiffness (helic-
ity) and vorticity as defined above for the ferromagnetic XY
model on this same lattice. In this case, both quantities be-
have identically and both exhibit a jump at the same finite
value of T.

IV. SUMMARY
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FIG. 2. The vorticity moduli as a function of T/J obtained by
comparing systems of different size.
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FIG. 3. The dashed curve and symbols represent the average of
the three vorticity moduli as a function of T/J. The solid line rep-
resents the predictions of the Kosterlitz-Thouless (KT) theory.

The Heisenberg antiferromagnet on the triangular lattice
is frustrated and the preferred arrangement of the spins is in
a plane at T=O. The corresponding order parameter is non-
collinear and the symmetry allows for the existence of topo-
logical defects. Previous Monte Carlo calculations found an
extremely rapid crossover in the behavior of the antiferro-
magnetic structure factor and the corresponding correlation
length near T=0.32J which may be related to the disappear-
ance of free vortices of the type identified by Kawamura and
Miyashita. However, results for the spin stiffnesses at low T
obtained in the same calculations were in excellent agree-
ment with the predictions of the nonlinear sigma model
which neglects vortices and predicts T,=O. The previous
work indicated that the spin stiffness vanishes at large
length scales and that the two-spin correlation length is finite
at all nonzero T but that there is a transition at T,= 0 with an
enlarged symmetry.

In the present work, the same numerical approach was
used to calculate the rigidity of the system against the for-
mation of free vortices at low temperatures. The vorticity
stiffness is finite at low T and disappears abruptly near
T= 0.31J.The behavior is consistent with a defect unbinding
transition of the Kosterlitz-Thouless type except that the vor-
ticity and spin stiffness behave differently. The spin stiffness
is zero on large length scales at all finite temperatures but the
vorticity exhibits a jump at a finite value of T. The rapid
crossover in the structure factor and two-spin correlation
length reported previously indicates that the spin wave and
vortex degrees of freedom are strongly coupled in this
model. In the Kosterlitz-Thouless theory of defect unbinding,
the spin wave and vortex degrees of freedom are uncoupled
at low T. A proper theoretical description of the Heisenberg
antiferromagnet must take account of the interactions be-
tween vortices and spin waves.

ACKNOWLEDGMENT

This work was supported by the Natural Sciences and
Engineering Research Council of Canada.



MONTE CARLO STUDY OF THE HEISENBERG . . .

'H. Kawamura and S. Miyashita, J. Phys. Soc. Jpn. 53, 4138
(1984).

T. Dombre and N. Read, Phys. Rev. B 39, 6797 (1989).
P. Azaria, B. Delamotte, and T. Jolicoeur, Phys. Rev. Lett. 64,

3175 (1990).
P. Azaria, B. Delamotte, and D. Mouhanna, Phys. Rev. Lett. 68,

1762 (1992).
P. Azaria, B. Delamotte, T. Jolicoeur, and D. Mouhanna, Phys.

Rev. B 45, 12 612 (1992).
W. Apel, M. Wintel, and H.U. Everts, Z. Phys. B 86, 139 (1992).

7J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).
M. Wintel, H.U. Everts, and W. Apel, Europhys. Lett. 25, 711

(1994).

B.W. Southern and A.P. Young, Phys. Rev. B 4$, 13 170 (1993).
N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
M. Caffarel, P. Azaria, B. Delarnotte, and D. Mouhanna, Euro-

phys. Lett. 26, 493 (1994).
H. Kamamura and M. Kikuchi, Phys. Rev. B 47, 1134 (1993).
J.A. Olive, A.P. Young, and D. Sherrington, Phys. Rev. B 34,
6341 (1986).

A factor of 3/2 must be introduced into J to account for the larger

coordination of the triangular lattice compared to the square lat-

tice as well as a factor of 1/2 for the antiferromagnetic correla-

tions.
Details will be presented in a separate publication.


