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Coupled quasiparticle-boson systems: The semiclassical approximation and discrete nonlinear
Schrodinger equation
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The validity of the semiclassical approximation is studied for a system comprising one quasiparticle coupled
to a boson degree of freedom. Using a two-site Holstein model as an example, it is shown that the semiclassical

approximation becomes exact in a nontrivial adiabatic limit. Furthermore, in the model s polaron regime, there

exists a hierarchy of time scales that rationalizes the quantum dynamics of the Holstein model. For the

single-mode case considered, the discrete nonlinear Schrodinger equation is found to be valid only in a highly
limited antiadiabatic regime.

We consider the widely relevant problem of the dynamics
of one fermionic or bosonic quasiparticle moving on a lattice
and interacting with boson degrees of freedom. One of the
recently used approaches to solving the problem has em-
ployed the semiclassical approximation (SCA) which as-
sumes that fluctuations of the quasiparticle and boson fields
are uncorrelated, and that, consequently, expectation values
of products of quasiparticle and boson operators may be fac-
torized. A further approximation has assumed the expectation
values of the boson operators to be slaved to those of the
quasiparticle operators, and has led to the discrete nonlinear
Schrodinger equation (DNLSE). The DNLSE constitutes the
foundation of discrete self-trapping which has been invoked
to describe localization of energy and its coherent transport,
for example, in biological systems or molecular crystals. The
quasiparticles are known there as "Davydov-Scott
solitons. " Our interest in the present paper is in examining
the validity of both the above approximations.

Questions concerning the applicability of the SCA and/or
the DNLSE have been raised by several authors. The
DNLSE follows unambiguously from the SCA (see, e.g. ,
Ref. 3) in the antiadiabatic limit in which the boson time
scale is the fastest one in the system. However, serious
doubts have been cast on the possibility of the DNLSE being
a consequence of full quantum evolution. ' ' A thorough
study of the quantum system in the antiadiabatic limit has
resulted ' in the conclusion that the DNLSE has a poor
range of validity. This limit has attracted the main focus
precisely because the derivation of the DNLSE from the
SCA is trivial in this limit. ' '

Because many of the results on the semiclassical theory in
the literature are concerned with dimers, ' we consider
here the Holstein model of the quantum dimer,

H= —Vot+kyo3+ zep(m +y ),

where the Pauli operators are defined in terms of the quasi-
particle operators as tT& = ctcz+ czcr, oz= —i(c,cz
—czcq), and o3=c~c~ —czcz. The dimensionless conjugate
operators cp and m, obeying the commutation relation

8~0 ~
= —2X +02,

B,o.2= 2Vo.3+2X cpo &,

(2a)

(2b)

[tp, vr] =i, describe a harmonic oscillator with energy
6p= A 4t)p. The quasiparticle tunnels with a matrix element V
()0) between sites 1 and 2 and interacts with the boson
mode p, the interaction strength being specified by the cou-
pling constant X. Our interest here is exploring the conse-
quences of this one-mode model at zero temperature. The
properties of Eq. (1) are controlled by two dimensionless
parameters g/ V (nonlinearity) and ep / V (adiabaticity),
where y—=2k /ep. However, in the adiabatic (ep/V&&1) and
the antiadiabatic (ep/V&)1) regimes, the physics of the
semiclassical model is determined by g/V. As a conse-
quence our basic philosophy here is to compare the quantum
mechanical and semiclassical dynamics at a given y/V, be-
cause this parameter characterizes the low-energy physics
outside the regime ep/V-1. Specifically, by varying ep and
with g = const, the possible regimes of validity of the semi-
classical theory become much more meaningful since the
physics that the quantum and semiclassical theories are ex-
pected to capture remains the same.

Our main results are threefold. First, we give a simple
argument supporting the earlier finding ' ' that the antiadia-
batic limit, leading to the DNLSE according to the usual
semiclassical arguments, does not produce the correct low-
energy physics of the Holstein model. Second, and most im-
portantly, we show that the semiclassical approximation does
become exact in the nontrivial (adiabatic) limit: ep, X~O
with y= const. Third, we identify a hierarchy of time scales,
which rationalize the quantum dynamics in the adiabatic re-
girne and are simply understood in terms of memory func-
tions for the system. In particular, we demonstrate the exist-
ence of a characteristic time 7.~ up to which semiclassical
dynamics is a good approximation. In the polaron-formation
parameter regime, ~~ coincides with the polaron-tunneling
time 7.T. In our analysis, we emphasize the distinction be-
tween the DNLSE and the SCA.

Hamiltonian (1) leads ' to the following coupled Heisen-
berg equations of motion for the quasiparticle and boson op-
erators:
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B,o3= —2Vo.2,

B~P = 6p'7T,

8~'7l= E'pp+ )Eo3,

(2c)

(2d)

(2e)
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where r= t/6 is the scaled time. The SCA consists of replac-
ing cp and m by c numbers in the expectation values of the
Heisenberg operators. This is equivalent to the assumption
that the quantum jfuctuations of the quasiparticle and the
boson fields are uncorrelated. The DNLSE results from the
further assumption that the expectation values are completely
correlated (slaved). This leads to an instantaneous boson-
mediated quasiparticle-quasiparticle interaction: ' '

«&,(&r) =0 X(&r), (3)

X &p( r) —+ X [&&«(0)cosep r+ 77(0) S1nep r] 2+O3( r), (4)

where rapidly oscillating components (relative to 2V) have
been omitted. Substituting Eq. (4) in Eq. (2a) shows clearly
that nonlinearities disappear in the limit of no retardation and
that the dynamics of the quasiparticle is linear. Thus, in the
antiadiabatic limit with a fixed y, the semiclassical approxi-
mation, (o;q&) = (o;)(&p), leads to an incorrect result because
2)I.&p- —ya3 and because ajak=ia& (j,k, l cyclic) in one
quasiparticle Fock space (for both bosons and fermions).
Even modifying the form of coupling of bosons to the qua-
siparticle will not produce the DNLSE-type diagonal nonlin-
ear self-interaction. This observation applies equally well for
systems with arbitrary number of sites or phonon modes. '
For more than one quasiparticle, statistics becomes important
and, for bosons, nonlinear terms (but not the DNLSE) sur-
vive. It is important to appreciate that there are antiadiabatic
regimes (i.e., finite ep), where the DNLSE approximately
reproduces the low-energy physics of the full quantum me-
chanical system (2) for sufficiently short times (r(& rs). We
now turn to this issue of the time domain.

Because no analytical solutions exist for semiclassical and
quantum time-evolution equations in the general case, we
resort to numerical methods. We focus on the time evolution
of (o.3(r)) and also monitor the correlation function

G(r) = &(&(r)—(&(r)))(~i(r) —(~i(r)))&, (5)

which measures the effect of quantum fiuctuations (i.e., cor-
relations in the fIuctuations of the quasiparticle and boson
fields) neglected in the SCA. Here A=—(X/V) q&. The quan-
tum expectation values are computed in a state given by the
projected part of the ground state of Hamiltonian (1) that has
the quasiparticle at site 1. The semiclassical equations are
solved with the corresponding initial condition (see below).
We emphasize that G(r) is precisely one of the two quantum
mechanical "driving forces" contained in Eqs. (2) that must

where o. is a vector whose components are the three Pauli

operators and 0 =(—2V, O, —y(o3)), which also incorpo-
rates the nonlinear term.

To test the DNLSE validity in the antiadiabatic limit, con-
sider Eqs. (2), and take the limit ep, X.—I~ such that
y=2)&. /ep= const. The bosonic degree of freedom can be
integrated out of the quantum evolution, and
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FIG. 1. The exact quantum (solid line) and the semiclassical
(dashed line) time evolution of the quasiparticle occupation differ-
ence (o.3(r)), for y=2II. /ep=6V. Also shown is the quantum
correlation function G(r). The other parameters are (a) ep=10V,
II. = ~30V; (b) ep= V, II. = +3V; and (c) ep= V/10, II.=—&«$30V.
Initially, the quasiparticle is assumed to be at site 1; for the detailed
initial conditions, see the text following Eq. (15).

be added to the semiclassical equations to make them exact:
(~ (r) ~1(r) ) (+( r) )(~i (r) ) G (r) '

In Fig. 1, we summarize a comparison between the semi-
classical and fully quantum evolutions of (o3(r)) for fixed
y and varying ep and X. Corresponding to the quantum me-
chanical initial state, we have assumed here that

(&p(0)) = —
)&./ep (17(0))=0, (o3(0))= 1, and the other

quasiparticle expectation values at v.=0 are zero. These
natural initial values imply («&,m(0))=0. Our choice of
y= 6V is large enough to yield self-trapping in the semiclas-
sical case. These results show that the semiclassical descrip-
tion completely fails for 2V, X~&ep and 4V~y, where the
quantum dynamics is essentially linear as discussed above.
In contrast, for 2V(&epoch, (implying self-trapping) there is
again a region where the semiclassical approach —and in-
deed the DNLSE—yields an approximate description of the
exact quantum mechanical dynamics as shown earlier. With
decreasing ep, the quantum dynamics leads to the formation
of a new composite particle, the polaron, where the motion
of the quasiparticle is slaved to the lattice dynamics. A char-
acteristic signature of this nonlinear dynamics is the appear-
ance of a very small energy scale eT which corresponds to
the reduced polaron bandwidth. The semiclassical descrip-
tion mimics the polaron formation by exhibiting permanent
self-trapping at one of the sites, but it cannot capture polaron
tunneling. As ep is further decreased, the period of tunneling
vz becomes exponentially large and gives only a small cor-
rection at 7.~ ~T. Figure 1 shows that correlations between
quantum fluctuations are very important at the onset of the
polar on formation. In the strong polaron regime
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FIG. 2. The magnitude of Xr,r, G(e) on the ep-k plane,

shown as a contour plot. Here e is the energy of the largest Fourier
amplitude of (o.3(r)). The increment between contour levels is
0.05. Note that the eo and ) axes are plotted beginning from a
nonzero value. (o.3(r)) = (1+n ) '+ (1+u ) 'cose~r, (6)

FIG. 3. The spectral density ~(e) of (o3(r)), for ep= V/10,
and X= —,,V30V (y=6V). The energy scales shown are e =6V,
e = 1.1V, a~=0.3V, and so= 1.1 10 ' V.

(eT(& ep, 2V) the correlations become smaller, although they
produce on average a continuous quantum force (represented
by G) at semiclassical turning points, which drives the sys-
tem between sites 1 and 2 periodically. During the tunneling
processes G changes sign ("direction"), being zero on aver-

age. Note again that, in this regime, the quasiparticle and the
boson degrees of freedom are strongly correlated. These po-
laronic correlations remain large for all times r. Of course
G(7) is negligibly small in the weak-coupling regime.

In Fig. 2, we plot the absolute value of XI,I, G(e),
where G(e) is the Fourier amplitude of G(r) and e is the

energy of the largest Fourier amplitude of (o.3(r)). In the
tunneling regime, e = eT . This figure is very useful for as-
sessing the importance of correlations between quantum
fluctuations of the quasiparticle and the boson degree of free-
dom. In the region where XI,I, G(e) is large, the semiclas-

sical approximation fails badly, and where it is small, the
semiclassical approximation works well. Figure 2 serves
therefore as a phase diagram for the validity of the semiclas-
sical theory. Interestingly, the trajectories p = const on the
ep- X plane follow approximately the topographic features of
XI,I, G(e), e.g., the ridge in Fig. 2. Thus, it is natural to

explore the limit ep X~O with y= const (as above). We can
reach a similar picture by studying temporal variations of
G(r).

The ground and first-excited states of the Hamiltonian (1)
can be readily constructed both in the adiabatic regime
(ep(&V), for g &)V/ep, and in the antiadiabatic regime
(Ep&) V), for arbitrary g—=k/ep. They are simply the
"polaron-tunneling" states ~%" ) = (~R) ~ ~L))/Q2. The
states ~L) = ~1,—g) and ~R) = ~2,g) describe the polaron (i.e.,
the quasiparticle and its correlated cloud of bosons) located
at site 1 and 2, respectively. Here ~g) =e 'g ~0) is a phonon
coherent state. The states ~%' ) are split by the energy
er=2V exp( —g ), which is the polaron-tunneling energy
and determines the tunneling period: rT=2m/er. In this
limit many properties of the system can be computed ana-
lytically. For example, consider (o.s(r))=(L~os(r)~L) in
the adiabatic regime Ep(+ V with g &) V/ep. For short times,

where e~= gy +4V and n=g/2V. Equation (6) has been
obtained previously in the anti adi aha ti c limit. We thus see
that y/2V emerges as the key parameter in both the adiabatic
and antiadiabatic limits. The signal shows fast oscillations
with period r~=2rr/e~ (the generalized Rabi frequency in
quantum optics ). Additional features appear at times
r&) r~, including the slow polaron tunneling motion, evident
as an oscillatory amplitude of the first term in Eq. (6).

Since the oscillator mass p, appears in the parameters as
~ p, and E'p ~p —,the adiabatic limit E'p X,~0 with

y = const, can also be regarded as the limit of infinite oscil-
lator mass, p,~~. In this massive oscillator limit, the serni-
classical result for (o-3(r)) coincides with the quantum me-
chanical one, Eq. (6). Moving away from the limit, the
agreement is only valid for times r&& rr (see below). Denot-
ing by r~ the characteristic time after which the semiclassical
dynamics deviates from the quantum mechanical one due to
quantum fluctuations, it is natural to define r~ - rT .. here the
deviation is signified by the quantum mechanical tunneling
between degenerate semiclassical minima. As g~ ~,
r~~ oo

As ep, X~O such that y=const (i.e., p, ~~), the ana-
lytical result (6) becomes increasingly accurate. This is evi-
denced by the agreement between the semiclassical and
quantum results; see Fig. 1(c). In particular, the average
value of (o.3)=0.90 at times r(&rT is essentially the same
for both cases [cf. Fig. 1(c) and Eq. (6)j. Nevertheless, strik-
ing differences remain because of two additional time scales,
r~ and r~ . As a consequence of a finite width 2 e~ of the
spectral features at the energy e~, the quantum fluctuations

/
2

produce a Gaussian decay, e ( '~, of the signal to its av-
erage value in a characteristic time r~=2/er. In the p~~
limit, r~ can be shown to diverge as r~= k '. However
because the spectrum is discrete and composed of nearly
equally spaced peaks, the signal shows (generally aperiodic)
revivals (quantum recurrences) after times —ra. The time
r~ is of order of the boson period: ra-2m/ep. In Fig. 3, we
illustrate these time (energy) scales by plotting the exact
spectral density of (mrs(r)) with the same set of parameters
as in Fig. 1(c). Note the hierarchy of times: r~=+p, ),
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s =+p, t ), ra=+p, t ), and rr=+e'~) (c a positive
constant). That only 7.

~ remains finite as p, —+~ explains why
the semiclassical approximation becomes exact in this limit.
The slow dispersion of the bursts in Fig. 1(c) continues at
longer times and we find numerically that the long-time be-
havior of G(r) [and (o.3(r))] has additional multiple time
scales due to a distribution of 7~'s (cf. semiclassical
results), ' culminating in polaron tunneling.

Memory functions of the generalized-master-equation
theory obtained for exciton motion " in the many-mode case
of Eq. (1) and applied for the explanation of charge mobility
observations in molecular crystals, ' offer a suitable frame-
work for understanding various time scales appearing in the
quantum problem. The quantum dynamics is solved by pro-
jection operators giving, for example,

8,(o3(r))+2 dr'~(7 —r')(o3(r')) =0.
Jo

(7)

The memory function M has been obtained' perturbatively
in the strong-coupling limit (y/V&) 1): for the single-mode
case,

2 —2 2 1 —cosa 7.M(r) =2V e g ' "'"'cos(2g sineo~).

For short times, ~ exhibits rapid oscillations of frequency
Z—=2g eo which approximately equals 2m/r~ for strong
coupling (y~)2V). The decay of M occurs in a time
1/geo which also equals 7~ in this limit. The fact that the
integral of the memory function during this period is nearly
zero, and that the memory function is exponentially sup-
pressed for large g to near-zero value explains the "silent
run" observed for (o.3(t)) [see Fig. 1(c)].The revival of the
memory function after the period 27r/ep of the phonon os-
cillation is responsible for the quasiparticle revival. The limit

p, ~~ reduces M(r) to 2V cosy'. Equation (7) then leads

to Eq. (6) trivially, establishing that the semiclassical de-
scription is exact in this adiabatic limit. Moreover, in the
strong-coupling limit and for finite p„ the memory-function
formalism correctly captures the essence of the four time
scales, x~, r~, ~~, and 7z. .16

We have studied here the quantum and semiclassical cor-
respondence of the low-energy dynamics of a coupled
quasiparticle-boson problem. In the polaron-tunneling re-
gime, the polaron binding energy gives one characteristic
energy scale. Our results are necessarily energy-sca1e depen-
dent, but similar numerical study can easily be extended to
higher energies. We also remark that spatially extended sys-
tems (for which quasiparticle tunneling generalizes to band
formation) could provide intriguing phenomena in the form
of length scales describing correlated quasiparticle and lat-
tice distortions, lattice spacing, etc. We speculate, for ex-
ample„ that a characteristic length l~ appears, at which the
semiclassical dynamics breaks down. '

Finally, three cautionary remarks are in order and lead to
important directions for future research: (i) With increasing
system size, additional time and length scales are introduced
that may change conditions for the validity of the SCA and
DNLSE. (ii) It is physically important to include coupling to
many ghonon modes to fully describe memory and a heat
bath. ' (iii) In assessing the utility of various approxima-
tions, we must be particularly sensitive to their manifesta-
tions in physical observables: Not all quantum retardation
effects are equally significant physically. However, for in-
stance in polaron contexts optical and structural experimental
probes are becoming sufficiently precise that it is now nec-
essary to go beyond semiclassical or adiabatic approxima-
tions for an understanding of the data.
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