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Statistical properties of coherent radiation propagating in a quasi-one-dimensional random medium are
studied in the framework of random-matrix theory. Distribution functions for the total transmission coefficient
and the angular transmission coefficient are obtained.

The discovery of universal conductance fluctuations'
(UCF's) has induced a partial shift of the main interest in the
studies of electronic properties from the averaged values of
physical quantities to their variance and then to the whole
distribution functions (see Altshuler et al. and references
therein). Later it was demonstrated that UCF's exist also for
the propagation of classical waves (e.g. , light) through disor-
dered systems. In contrast to electronic measurements
which can measure only the conductance of a system, light

experiments have the advantage of being able to measure the
angular and the total transmission coefficients for an experi-
mental realization.

In our previous publication we analyzed the problem of
statistics of radiation using diagrammatic techniques. It was
rigorously shown that the distribution function can be repre-
sented through the contribution of connected diagrams only.
This representation allowed to develop a perturbation theory;
in the framework of this theory it was found that only for
moderate values of the angular transmission coefficient the
distribution function is a simple exponential, as predicted by
Rayleigh statistics. For larger values of intensity, the distri-
bution function differs drastically from a simple exponential
and its asymptotical behavior is a stretched exponential de-
cay. Also for the total transmission coefficient the Gaussian
distribution function was obtained.

An important step was made by Nieuwenhuizen and van
Rossum. While in Ref. 5 the perturbation series was trun-
cated after the second term, Nieuwenhuizen and van Rossum
using diagrammatic techniques combined with random-
matrix theory managed to sum up the whole perturbation

series, obtaining in particular a more precise stretched expo-
nent for the angular transmission coefficient distribution
function and deviations from the simple Gaussian for the
total transmission coefficient.

In this paper we reproduce the results of Ref. 6 in the
framework of the random-matrix theory. The approach is
based on the analysis of the transfer matrix R (see Stone
et al. and references therein). Under the restrictions of flux
conservation and time-reversal invariance, this matrix can be
represented in the form

o )($1+) Q~ )/U 0 )
R=

&1+)~) I, »*)'

where u and U are arbitrary NXN unitary matrices and
is a real, diagonal matrix with N positive elements

P &, . . . , X.z, where N=W k is the number of transverse
channels (W is the area of the sample). The N XN transmis-
sion matrix is given by

where ~=(1+X)
In the isotropic approximation an ensemble of R matrices

is described by the differential probability d P(R)
=P({r))II,dr, dp(u)dp(U), where dp(u)l dp(U)] is the
invariant measure of the unitary group U(N). This isotropic
approximation is a rather strong assumption implying the
perfect mode mixing but for a quasi-one-dimensional system
it is known to be good.
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The angular transmission coefficient T,b, defined as the
ratio of the energy carried away by the transmitted wave with

the transverse wave vector qb to the energy of the incident

wave with the transverse wave vector q„, is given by
lt, bl, t,b being the ab matrix element of Eq. (2). The nth
moment of T,b can be written down in the following way:

(T",„)= g ((u, u. )(u, p u„p )*)p
(-),(~)

P(T, ) = dr, dr„dUP((r})
J

It is convenient to work with the Laplace transform (we
also measure T, in units of (T,) =g/N, where g is classical
conductance):

X((r r rp . rp )'"),

X((Ub ' ' 'Vb )(Vbp ' ' 'Vbp ) )p, (3)

ds
P(T,) = . exp(sT, )F(s/g).—ioo2 7TE

where the average indicated by the index 0 is performed with
the invariant measure of the unitary group and

(&) =fd(r}P((r})&.
It is known that to leading order in 1/N both real and

imaginary components of u, and U &b are independently dis-
tributed Gaussian variables with zero mean and variance
1/2N. ' Then we can write down correlator

((vb vb )(Ubp . Ubp )*)p as the product of correla-

tors (vb vbp)p= 8 p/N summed up with respect to all n!
possible pairings between (u} and {P}.So from Eq. (3) we
get

n!
lu-„I') p x (r.,

n!
(4)

where

Then easily carrying out the integration with respect to
dU, we find

We are going to use an approximation of the uniform
distribution of the "charges" p, which are defined by the
relation: r = 1/cosh (vJ2). That is, knowing that the distri-
bution of "charges" is statistically homogeneous, instead of
averaging with respect to all possible configurations of
"charges" we take into account only one configuration—
crystal lattice, which leads to the following relation:

01 d7
X f(r.) =g f(r)

&p2r 1 —r

for any f(r) which goes to zero when r goes to zero. Then
from Eq. (10) we get

(5)

It can be easily seen that T„ is just the total transmission
coefficient: T, =XbT,b. In fact the nth moment of the total
transmission coefficient XbT, b is

d7.
F(s) = exp —g ln(1+ s r)

p2r 1 —r

=exp[ —gin ($1+s+ Ps)], (12)

which exactly coincides with the result of Ref. 6. Equation
(12) gives, in particular, Gaussian behavior for T,=1:

(
( )n
g T,b

= g ((u, ~ u, ~ )(u, p ",p .)*)p
i b ) I-),lp), (b) P(T,)=

3g
477

exp— (13)
3g

(T, 1)2—
X((vbi i Vb„)(vbipi Vb„p„) )p

and simple exponential decay for large T„:

P(T„)-exp( gT, ). —

Now let us return to Eq. (4). As is known it means

(14)

To leading order in 1/N

((Ub . .Ub„)(Vb p Ub„p„) )p 8 p
' ' ' 8 „p„

(7)

(because the b indexes are different we should take into ac-
count only one pairing), and the right-hand part of Eq. (6) is
exactly (T,").

Returning to Eq. (5) we see that the distribution function
P(T,) can be written as an integration over eigenvalues and
eigenvectors:

P(T,b) =
( oo

dT„P(T,) —expT.JO

T.b)

Ta1
(15)

(we measure T,b in units of (T,b) =g/N, where g is clas-
sical conductance). This distribution function can be de-
scribed as the Rayleigh distribution function for the angular
transmission coefficient but with some effective averaged
value which in turn Auctuates around the real averaged
value, and the latter fluctuations are described by the total
transmission coefficient distribution function. ' Equation
(15) gives, in particular, Rayleigh statistics
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P(T,b) =exp( —T,b)

for T,b(& Qg, and stretched exponential tail

+(T b) exp( 2~gT b) (17)

for Taj, +~g
Having in mind the comparison of the theoretical result

with an experiment it is convenient to express g through the
first two moments either of the total or of the angular trans-
mission coefficient distribution function. Calculating the co-
efficient before s in the expansion of the exponent in the
right-hand part of Eq. (12) we get

and

(T b) 4

(T b)

which exactly coincides with the result of Ref. 8.
In conclusion we want to discuss the difference between

the statistics of the total transmission coefficient and the sta-
tistics of conductance g=X ~ . Taking into account the
bimodal distribution of v. we may say, at least qualitatively,

that the conductance is simply the number of "open"
channels: " g=N, ff. The total transmission coefficient is
also the sum with respect to "open" channels but each chan-
nel comes with a random weight. So the Gaussian law for the
total transmission coefficient distribution function is just the
manifestation of the central limit theorem, which is true
when N,ff~~. In the paper we are taking into account the
finiteness of the parameter N,z, which is important, in par-
ticular, for obtaining correct asymptotics. On the other hand,
the conductance fluctuations are determined by the strongly
suppressed fluctuations of the number of open channels,
which in our case can be neglected. This principal difference
between the two statistics would also manifest itself if one
tries to go beyond quasi-one-dimensionality. While the ei-
genvalue distribution (and hence the conductance distribu-
tion function) can be not very sensitive to the dimensionality
and stay bimodal as long as we are in a diffusive regime, '
the isotropic approximation which was essential in obtain-
ing Eq. (12) ceases to be valid beyond quasi-one-
dimensionality. '
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