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Strong-confinement approach for impurities in quantum dots
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The problem of a donor impurity in a confined geometry with dielectric mismatch at the boundaries has been
studied. It is shown that in the limit of dot size smaller than the effective Bohr radius, the problem admits an

extremely simple perturbative solution for arbitrary impurity locations. The first-order energy corrections
("binding" energy) are obtained analytically for the s- and p-like states, and with a minimal numerical effort
for the d,f,g, . . . states. Important charge-induced polarization effects are found for the particular case of a
silicon dot embedded in an amorphous silicon dioxide (a-Si02) matrix.

One of the main motivations behind the widespread inter-
est in the physics of semiconductor heterostructures lies in
the feasibility of producing quantum confined systems,
where carriers are restricted to move in two, one, or zero
dimensions (quantum wells, wires, and dots, respectively).
Recently, much attention has been given to the electronic
structure of quantum-dot structures owing to their potential
application in electronic devices. For instance, confined
donors, acceptors, and excitons ' in quantum dots have
been studied.

A common theme in all these studies is the problem of a
hydrogen atom in a confined geometry. While this problem
admits in principle an exact solution, this is rather cumber-
some and restricted to on-center impurities in spherical
quantum dots. Generalizations of these results for the inter-
esting case of of'f-center impurities leads to variational
calculations. The aim of this work is to point out that in the
strong-confinement limit (dot dimension smaller than the ef-
fective Bohr radius) an extremely simple method can be ap-
plied to these problems. The utility of the technique is il-
lustrated for the simplest case: a donor impurity located
anywhere in an infinite barrier spherical quantum dot of di-
electric constant a1 immersed in a matrix of dielectric con-
stant a2.

Within the envelope function approach to the effective
mass approximation, the Hamiltonian for this problem can be
written as

1
2

1 10= ——
z V + —V,(r) ——V, (r,r;),

where r (r;) is the electron (impurity) coordinate, V2 is a
three-dimensional (3D) Laplacian, V, is the effective Cou-
lomb interaction between electron and donor (including the
induced polarization charges)

oo

r~
V, (r, r;) = 2 P~(cos f) r/(I —r;) z+,=0 r)

(8+ 1)(ei—e2)+ l (roe2+ Y(et+ e2)

and V, corresponds to the self-polarization interaction be-
tween the electron and the bound surface charge density that
it induces at the spherical boundary,

V,(r) = (~+ 1)(e i —e2) 2Y
e2+ P(et+ e2)

In writing Eqs. (1)—(3), we use the effective Rydberg
Ry* =m*e /2' et as the unit of energy (with m* the effec-
tive mass of the semiconductor well acting material), the dot
radius R as the unit of length, and K=R/ao
(ao =et' /m*e being the effective Bohr radius). Besides,
in Eq. (2) P~(cosQ are the Legendre polynomials of order
8, ( the angle between electron and donor (measured from
an origin at the dot center), r( (r)) the smaller (greater)
between r and r;, and r/(x) is the step function. It is easy to
check that when e1=e2, V, reduces to the usual Coulomb
interaction 2/lr —r;, while V, =O.

The important point to note from (1) is that the kinetic
energy scales as 1/li. , while Coulomb and self-polarization
contributions scale as I/X. Thus the former dominates at
small k. In this strong-confinement limit, V, and V, can be
treated by standard perturbation theory. The same technique
has been applied in Refs. 11—13 to study the stability of
biexcitons in semiconductor quantum dots.

The zero-order wave functions are just the one-particle
kinetic energy eigenfunctions in the sphere
—V t/1(r)=EQ(r) with the boundary condition t/1(r=1)
=0. The solutions which are finite at the origin are

P„~ (r)=N„~j~(kr)Y~ (8, $) with energy E=k; N„~ is
a normalization constant, j~(kr) are the spherical Bessel
functions, and Y~ the spherical harmonics. The wave func-
tion must vanish at the boundary j~(k) =0, giving the eigen-
value spectrum k„~=x„~, where x„~ is the nth zero of the
8th spherical Bessel function. The normalization integral
can be evaluated explicitly to give N„~=2/j~+t(x„y).

Application of standard perturbation theory up to second
order in k yields the following expansion for the total en-

ergy:

e,(28+ 1) r+
(2) p(0) + E(1) p(1) g(2) +tx j set' g cA' Cl (4)
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with E =x, E = {alV;Ia) (i=s,c), and
E'."=&/[(I(~IV.+ V.IP)l')/(E~' —E'.")];~ (o. P) s~ands
for a given set of one-particle quantum numbers (n, g, m).
Since the first two terms on the right-hand side of Eq. (4) are
constants independent of the presence of impurities, we will
concentrate our attention on the impurity dependent remain-
ing terms. The difference E —E{ )/X —E{ l/X is also
known as the "binding energy" of the hydrogenlike confined
system, by analogy with higher dimensionality cases. This
terminology, however, must be used with caution, as for the
particular case of quantum dots no truly unbound configura-
tion exists, because the electrons are always constrained to
remain inside the dot.

We start our analysis with the simplest case X=m =0
(s states). Explicit calculation of matrix element
(nOOIV, ln00) yields the following analytic expression for
the first-order perturbed energy:
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if r;~1, with Cin being the cosine integral function. Only
the term 8=0 of the sum in Eq. (2) gives a contribution for
these s-like states.

A graphical representation of Eq. (5) is given in Fig. 1, the
lower set corresponding to the case e& =e2 of no dielectric
mismatch between dot and matrix (this could apply to
GaAs/Al„Gai As quantum dots), the upper set correspond-
ing to a situation with a large dielectric mismatch e& =12,
e2=4 (this could apply to Si/a-Si02 quantum dots' ). As is
evident from Eq. (5), the first-order energy correction is an
increasing function of the dielectric mismatch (et) e2), re-
sulting in an enhancement of about 100% for the particular
case displayed in Fig. 1. Physically, this arises from the fact
that the induced charge of the donor is positive if e&~a2
lsee Eq. (2)]; consequently, as the electron interacts both
with the donor and its induced charge, this results in a large
increment of the "binding" energy. Also, it is interesting to
note that as E, „oo(0)=2[(ei —e2)/e2+Cin(2 n)i]r, with
Cin(x) an increasing function of its argument, the first-order
correction increases with n, for the case of the on-center
impurity. This is due to the fact that the zero-order electronic
density, which is proportional to

I jo(k„or)I, has a maximum
at r = 0; this becomes higher and narrower when n increases.
The first feature explains the large binding with increasing n,
while the second is associated with the reverse situation
found when r, ~0.4. For r;) 1, the result El lou(r;)
=2et/r;e2, independent of n, is understood as a conse-
quence of an electrostatic Coulomb interaction between two
nonoverlapping charge distributions: the point impurity and
the spherically symmetric electronic density.

In order to test the accuracy of our strong-confinement
approach, we have performed a second-order calculation for

FIG. 1. First-order Coulomb energy corrections (in units of
Ry*) versus impurity location for the three lowest s-like states;
lower {upper) set, e, = ez {et= 12,e@=4). The slope discontinuity
at r; = 1 for the upper set is due to the boundary dielectric discon-
tinuity. Second-order corrections are also included for the ground
n=1 state and e&=e2.

1V, , = Vi, =F(r;)——(3cos 8;—1)G(r;), (6a)

1
Voo=F(r;)+ —(3cos 8;—1)G(r;), (6b)

3V, o= —Vt), = sin8;cos8;e'~ G(r;),
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(6c)

3
2V, i= V,*,= ——sin 8;e '~~G(r;), (6d)

the ground a = 100 state (e i = e2); the correction to the first-
order result is given by the dashed line in Fig. 1.The correc-
tion is seen to have a maximum when r;=0, but even for this
case and in the worst situation X = 1, it amounts to just a few
percent of the first-order contribution. The same conclusion
applies qualitatively to all the remaining excited states stud-
ied in this work.

We proceed now to discuss the next case: 8= 1 or in-like
states. The main difference with the previous calculations for
the 8= 0 states is that the zero-order energies, being inde-
pendent of m, are the same for the 8= 1,m=0, ~1 states.
According to degenerate perturbation theory, the first-order
correction to the energy is given by the diagonalization of the
3 X 3 matrix of the perturbation {2)in the zero-order basis of
the /=1,m=0, ~1 states. The explicit expression for the
matrix elements is as follows:
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E,'„„=E,'„, ,=F(r;) —G(r;)/5,

Et, )&&=F(r;)+2G(r;)/5.

(8a)

(8b)

A plot of these solutions is given in Fig. 2 for the two
lowest values of the principal quantum number n; again the
lower (upper) set corresponding to the e &

= e z

(e, =12,e2=4) case. Clearly, induced polarization effects
are as important as for the previous case; besides, its contri-
bution is impurity position dependent, which explains why
the upper set is not merely the lower set plus a rigid shift (as
is the case in Fig. 1). Similar to the results for the
8=0 s-like states, we found that the first-order correction
to the energy of the 8= 1 p-like states increases with n, for
on-center impurities. However, the 8= I,m = 0 state shows a
nonmonotonic dependence on r;, presenting a maximum

where r;=r;k„&. These expressions are valid if O~r;~1;
taking the appropriate limit in the equations above, it is easy
to see that only the contribution proportional to p(r;) re-
mains finite for the r;=0 on-center impurity case. When
r;~1, F(r;)=e&/e&r;, G(r;) =5e27(1)/(2er+3e2)r, '.
For these p-like states, only terms with /= 0 and 2 from Eq.
(2) give a nonzero contribution.

The diagonalization of matrix (6) yields a set of three
eigenvalues (for each n), which as a result of the inherent
spherical symmetry of the system are independent of the an-

gular impurity coordinates 8; and P; . Given this fact, we
have at our disposal the choice of the impurity angular coor-
dinates: inspection of (6) reveals the obvious choice 8;=0
(corresponding to the impurity moving along the z axis), as
this choice renders matrix (6) automatically diagonal. Ac-
cordingly, the eigenvalues are given directly by the diagonal
elements (6a) and (6b) with 0;=0,

FIG. 2. First-order Coulomb energy corrections (in units of
Ry*) as a function of impurity location for the two lowest p-like
states; lower (upper) set, e, =e2 (e, =12,e2=4). The degeneracy
of m= ~1 states is not lifted when r;40.

binding energy at some finite value of r; inside the quantum
dot. Both features are easy to understand by recalling that the
zero-order electronic density, which is proportional to
lj&(k„&r)l in this case, is zero at the origin and shows a
maximum that approaches the origin gradually with increas-
ing n. Therefore, the donor ion at the origin influences the
states with larger n more strongly. The nonmonotonic behav-
ior of E, „~0 is explained by the angular dependence of the
zero-order electronic density, which gives rise to an accumu-
lation of negative charge along the z axis, the same axis
where the impurity is moving radially. On the contrary,
p-like states with m = ~ 1 present an accumulation of nega-
tive charge in the x-y plane, and consequently E, „~ ~

al-

ways decreases when the impurity goes away along z. It is
interesting to note that for r;~1, Eqs. (7a) and (7b) corre-
spond exactly to the electrostatic interaction energy between
a point charge and a charge distribution with a net charge and
quadrupolar moments. The first interaction contributes with
the term F(r;) and decays as 1/r;, while the second gives
rise to the term G(r;), which decays as 1/r, .

It should be emphasized that while the results presented
for p-like states correspond to the particular case
8;= P;=0 (impurity moving along the z axis), they are ac-
tually valid for arbitrary values of the angular impurity co-
ordinates.

To illustrate the versatility of our approach, we present in
Fig. 3 the first-order energy corrections for the ground and
first nine excited states of our quantum-dot hydrogen atom;
for simplicity, we present only results corresponding to no
dielectric mismatch (e~= e2). The displayed results are for
the impurity moving along the z axis and m =0. Similar to
the /= 1 case, this choice of the impurity position renders
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the (2E+ 1)X (28+ 1) Hamiltonian matrix of the angular
momentum / states automatically diagonal; as seen previ-
ously, no generality is lost with this choice. After this sim-
plification, the only calculation necessary to obtain an output
like Fig. 3 is the numerical integration of a few one-
dimensional radial integrals (as the angular integrations can
be carried out analytically).

Several features should be noted from this figure.
(i) While it is possible to give a defined ordering for the

zero-order energy contributions (E, tpp(E iip(E~ ~ (o) (o) (o)

(E( zlpp( ), the ordering of the first-order corrections is
impurity position dependent. For instance, the ordering at

ri 0 (Ec,spp)Ec, 2pp)Ec, tpp&E, z,p) ) is completely(1) (1) (1) (1)

reversed when r;=0.75.

FIG. 3. Behavior of the first-order energy corrections (in units of
Ry*) for the ten lowest states in the absence of a dielectric constant
mismatch at the boundary. The value of m=0 and the principal
quantum number n runs from 1 to 3 for s-like states, from 1 to 2 for
p- and d-like states, and n = 1 for the remaining l=3, 4, and 5
states.

(ii) All the m=0 states with /40 have a maximum
contribution when r; 4 0; the reason for this behavior is the
same as that explained above for the 8= 1 states.

(iii) While the electronic charge distributions associated
with the 8=0,1,2,3, . . . angular momentum quantum num-

bers are quite different from a multipole expansion analysis,
already for r;=2 the only sizable interaction which remains
is between the impurity and the point charge electronic con-
tribution.

(iv) Finally, a comparison between our results and Fig.
3(b) of Ref. 9(b) reveals a good qualitative agreement be-
tween the two approaches. This is not surprising, as the latter
results were obtained for a quantum dot with X = 1 and bar-
rier height V0=80 Ry, which is inside the regime of va-
lidity of our perturbative approach.

In summary, in the present work we have demonstrated
that for quantum dots of typical size smaller than the effec-
tive Bohr radius, an extremely simple perturbative approach
can be used to study the problem of a confined donor impu-
rity located anywhere. We believe this to be the most natural
approach for small quantum-dot structures. The technique is
so simple that it is possible to obtain analytic expressions for
the s-like and p-like states; analogous results for higher ex-
cited states only requires a minimal numerical effort. It
should be pointed out that since the results presented in this
work are absolutely rigorous in the limit of small dot sizes,
they can be used as a test in the study of more complicated
problems. A number of possible extensions seems feasible
owing to the simplicity of the strong-confinement approach:
the equivalent but more intricate problem of acceptor impu-
rities in quantum dots, the shape dependence of the present
results, and the possible generalization to the more realistic
case of parabolic confinement.
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