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Nonlinear calculation of the stopping power of a two-dimensional electron gas for heavy particles
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We present a nonlinear calculation of the stopping power of a two-dimensional electron gas in its ground
state at metallic and overmetallic densities (1(r,(10) for slow heavy repulsive intruders (antiprotons). We

employ a scattering (kinetic) approach with the effective scattering potential coming from the profile equation
of the Sjolander-Stott theory. A similar calculation in three dimensions shows excellent agreement with the

density-functional theory results. In two dimensions, we obtain a stopping power which falls in between the

bare Coulomb and linear screening potential treatments.

I. INTRODUCTION

Over the past 20 years there has been a steady interest in
the two-dimensional (2D) quantum electron gas. One of the
basic characteristics of such a gas is its stopping power with
respect to charged intruders. The stopping power is the en-

ergy lost by the ion due to the retarding force in the medium
per unit length of its trajectory. Recent experimental avail-
ability of beams of heavy negative ions has triggered further
interest in this field. These experiments contain important
information about the effective scattering potential (see be-
low) and, consequently, electron correlations. In actual cal-
culations of the stopping power one usually employs the jel-
lium model, in which the electrons are distributed over a
neutralizing positive background. The situation in three di-
mensions is rather well known. Recently, a scattering (ki-
netic) treatment of the stopping power of a 2D electron gas
has appeared. Briefly, kinetic treatment refers to the follow-
ing. If the incoming ion has a large mass, its trajectory re-
mains classical to a reasonable approximation. The electrons
are treated as noninteracting and the effect of the ion on the
electron gas is described in terms of an effective potential. In
the reference frame of this ion the electrons are scattered by
an effective potential, and the retarding force arises because
of momentum transfer. Knowledge of the effective potential
is crucial for the kinetic approach.

Another approach to the problem of retardation in the
electron gas is to calculate the net field at the location of the
ion through the medium response. This (dielectric) treatment
for 2D electron gas was presented in Ref. 4. The authors
used the random phase approximation linear response func-
tion. However, as was pointed out in Refs. 3 and 5, there is
no direct connection between kinetic and dielectric treat-
ments. The quality of results can be judged only by compar-
ing results of both approaches. The kinetic approach is non-
perturbative, while the dielectric approach, essentially,
corresponds to the first Born approximation, which is far less
reliable in two dimensions than in three dimensions. Never-
theless, so far, the shortcoming of both techniques has been
the absence of nonlinear screening effects. The ability to
treat nonlinear screening effects is essential for experimental

implications, because it is well known that the response of an
electron gas even to a charge of ~ 1 is highly nonlinear.

In this work we present a kinetic treatment of the stopping
power using a nonlinearly screened scattering potential based
on the Sjolander-Stott (SS) theory. We calculate the stopping
power of a slow heavy repulsive intruder in the ground state
of an electron gas (T= 0) at metallic and over-metallic den-
sities. We compare our results for three dimensions with the
3D density-functional theory calculation of Nagy et al. to
demonstrate that our procedure produces reliable results.
Then, we present our 2D calculation and compare them with
results in Ref. 3. As is expected, in the metallic region our
stopping power falls in between the results obtained by em-
ploying bare Coulomb and linearized Thomas-Fermi (linear
screening) effective potentials. We use atomic units through-
out this work.

II. FORMALISM

One of the simplest nonlinear approaches to the problem
of an impurity in the electron gas is the SS theory. In the
metallic range in three dimensions it was known for a long
time to produce reliable results for a repulsive impurity. Re-
cently it was shown that the same holds in two dimensions:
one can reliably describe the effect of a repulsive impurity on
the two-dimensional electron gas at metallic and over-
metallic densities with the SS theory. We will use the profile
equation resulting from the SS theory ' to calculate the in-
duced electron density around the intruder, and deduce the
effective potential acting on the noninteracting electrons.
This (nonlinear) effective potential will serve as input to the
kinetic treatment of stopping power.

The relation between the stopping power and the scatter-
ing potential can be obtained in a straightforward fashion. In
general, the stopping power in the kinetic approach is given
by

S(D)=,v, d pF(ep) v„o„(D,v„). .
2 w1 U

Here, D = 2,3 is the dimension of the system, F is the Fermi
distribution, o.„ is the transport cross section, e~=p /2 the

0163-1829/95/52(4)/2305(4)/$06. 00 R2305 1995 The American Physical Society



R2306 ANDREY KRAKOVSKY AND JEROME K. PERCUS 52

free-electron energy, and the relative velocity v„=v —p has
magnitude (y is the relative angle)

u„=(u +p —2upcosq)'

We will be concerned here with a slow intruder. In this case,
for a well-behaved o.„, stopping power (1) reduces to

S(D) =n upF o„(D,P. F).

Here, n is the electron density, pz= +2/r, for two dimen-
sions and pF=(9m/4) t /r, for three dimensions, r, bein
the Seitz radius. The transport cross sections are given by
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FIG. 1. The stopping power of 3D electron gas for a slow anti-
proton (Z = —1) as a function of the Seitz radius r, ; u is the

projectile velocity. Solid line, present theory; dashed line, density-
functional theory results of Nagy et al. (Ref. 8).

4~
o„(3D., u„) =

2 g (1+1)sin [61(u„)—8l+l(u„)]
1=0

(5)

A. 3D calculation

We perform a calculation for a negative ion of charge
—1 (antiproton). As was mentioned above, we will be con-
cerned with slow repulsive intruders, and calculating induced
density in the static limit becomes a good approximation. We
start from the (static) profile equation resulting from the SS
theory, written in terms of the dimensionless momentum

q~q/kF '.

( q'- k'
n'" ' =f (q) 1+ k dk 1+

zp ( 2qk

)& ln n'"d 30@+q"k—q )"' (6)

Here, n'" ' is the Fourier transform of the induced electron
density, and f (q) is the induced density in the linear re-
sponse approximation:

f' (q)=X,u, , (7)

yz being the linear response, uq= —4vrZe /q the impurity
potential, and Z the impurity charge. We employ the linear
response function from the work of Farid et al. After ob-
taining the induced density, we deduce the effective potential
and calculate scattering phase shifts. We would like to re-
mark on the Friedel sum rule (FSR), as it is an essential
ingredient of the majority of the effective potential calcula-
tions. Usually, one uses the FSR in order to organize a self-
consistent procedure. The free parameters of the effective

for 3D. The y and BI are the scattering phase shifts in two
dimensions and three dimensions, respectively. As the in-
truder is considered to be heavy and slow, it is a pood ap-
proximation to consider a static effective potential.

Below, we will compare our results for three dimensions
with the three-dimensional density-functional theory calcu-
lation in order to show that our procedure is capable of
reliably treating nonlinear effects. This fact will allow us to
apply this procedure in two dimensions.

potential are adjusted in such a way as to enforce the FSR. In
our case there is no need for that. Instead, it provides an extra
test for our effective potential. Indeed, we find that FSR is
satisfied within the 0.5% accuracy. Our results for the stop-
ping power together with results of Ref. 8 are shown in Fig.
1. Both results agree within the 3% accuracy. This agreement
allows us to carry out the same procedure in two dimensions.
In the next paragraph we apply our technique to the 2D elec-
tron gas.

a ( q, k )n'"' =f ( ) 1+ kdk n'"'
Ik'+q' (8)

/

with the same notation: f (q) is the induced electron den-
sity in the linear response approximation. It is given by (7)
now with y~ the 2D linear response, and u~= —2m.Ze /q.
For the 2D linear response we use extrapolated numerical
results of Neilson et al. The extrapolated f (q) (for
1(r,(20) is

with

Z 2+2 r,f' (q)=
2+2 r +q —r Fq(r )

(9)

' a, (x) q+a2(x) q2 1f q~~2)

F (x)=~ a, (x) q+a2(x) q2

, +I b&(x) (q —2) +b2(x) (q —2) ]/q if q)2,

at(x) =0.06x,

a z(x) = 0.69—0.028x —0.0004x,

b, (x) = —14.8+ 1.38x —0.02x

b2(x) = 3.5933—0.674x+ 0.01347x

Our f (q) incorporates the correct high- and low-q depen-
dence with the fit function Fq(x) interpolating in between.

B. 2D calculation

In two dimensions the SS profile equation takes on the
form (momentum is dimensionless)
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The exact calculation of transport cross sections for BC and
LTF in the first Born approximation was done in Ref. 3:

o.„(2D,v „)=Z 2 tanh
Ur U„

(13)

0
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g(v„)

v, &11-v,'I)
(14)

FIG. 2. Same as in Fig. 1 for 2D electron gas. Solid line, present
theory; dashed line, bare Coulomb (BC); dotted line, linearized
Thomas-Fermi (LTF), numerical; dash-dotted line, LTF in the first
Born approximation effective potentials.

The function 4(q, k) in (8) results from angular integration.
In terms of special functions it is given as

q ~ ~L 2aqk)(1—aqk)]-
4&(q, k) =—

g(v. ) = '
—, —arcsin U„ for U„&1

ln(v„+ gv„—1) for v„~1.

III. CONCLUSION

As one expects, our results for the stopping power are sig-
nificantly lower than those for the BC potential, and higher
than for the LTF potential. The results produced by the LTF
in the first Born approximation would be reliable for high
densities (r, (~ 1), and as we see, in the metallic range it does
even worse than BC.

Kl 2aq k/(1+aq k)]

$1+a,„)
where

aq Pk 3 5
F

4 2 ] 4 747 7 q ')

2qk
aq s —

12+

We repeat the same procedure as in three dimensions: calcu-
late the scattering phase shifts from the effective potential

and then the 2D stopping power is given by (3, 4).
Our results for the stopping power are shown in Fig. 2.

We compare them with the stopping power for the bare Cou-
lomb (BC) potential with exact phase shifts, and linearized
Thomas-Fermi (LTF) potential, both of them linear treat-
ments. LTF potential is given by

We have presented a nonlinear calculation of the stopping
power of the 2D gas in its ground state at densities
1(r,(10 for slow repulsive intruders (antiprotons). Calcu-
lations were performed using a scattering (kinetic) approach
with a nonlinear effective potential resulting from the SS
profile equation. Our results constitute a significant and im-
portant improvement over the recent (linear) results in this
field ' from both experimental and theoretical points of
view. Using our technique it is possible to obtain the 2D
stopping power for intermediate and large velocities of re-
pulsive intruders. This requires a dynamical effective poten-
tial, which in our context means a reliable knowledge of
dynamical response. This problem will be the subject of our
next publication. We would like to note that our approach
cannot be applied to attractive intruders (protons) at metallic
densities because the SS theory fails to describe an incipient
bound state. A nonlinear treatment of the stopping power of
2D electron gas for attractive intruders remains a focus of
future research.

Z
V(r) = ——(1—7rr[H&(2r) —Yo(2r)]), (12)
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