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Zero-bias anomaly of tunneling into the edge of a two-dimensional electron system
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We investigate the electron tunneling into the edge of a clean weakly interacting two-dimensional electron
gas. It is shown that the corresponding differential conductance G(V) has a cusp at zero bias, and is charac-
terized by a universal slope IdG/dVI at V=O. This singularity originates from the electron scattering on the
Friedel oscillation caused by the boundary of the system.

It is well known that the electron-electron interaction in
one dimension leads to a power-law singularity in the tun-
neling conductance at zero bias (see, e.g., Ref. 1).When the
interaction is weak, this anomaly may be attributed to a
singular backscattering of the incident electrons on the
Hartree-Fock potential associated with the Friedel oscillation
formed near the tunnel barrier. The Friedel oscillation affects
the electrons on the Fermi surface almost the same way a
periodic potential affects electrons with the wave vector on
the boundary of the Brillouin zone. The tunneling density of
states does not acquire a gap of finite width because unlike a
strictly periodic potential, the oscillation decays with the dis-
tance from the barrier. However, this decay in one dimension
is sufficiently slow (inversely proportional to the distance) to
lead to a power-law singularity in the density of states at the
Fermi level. It has been shown that this power-law singular-
ity survives also in a multichannel case—for tunneling into
the edge of a long wire of a finite width. However, the cor-
responding exponent decreases with an increase in the num-
ber of the transverse modes. The question is whether any
reminiscence of this zero-bias anomaly persists in the limit
of an infinite number of modes, i.e., in two dimensions.

We show in this paper that the differential conductance
for tunneling into the edge of a clean, interacting two-
dimensional electron gas (2DEG) is singular at zero bias.
The backscattering from the Friedel oscillation in this case
does not renormalize the zero-bias conductance to zero, but
still leads to a nonanalytic behavior of G(V) at small applied
voltages. The corresponding cusp in G(V) is characterized
by a finite slope IdG/dVI at V=O, which is universal, i.e.,
does not depend on the interaction strength.

To clarify the origin of the cusp in the differential con-
ductance, we investigate first tunneling into the edge of
2DEG with a short-range electron-electron interaction. In
this case, the lowest order perturbation theory in the interac-
tion potential is applicable. Our calculation of conductance
in a weakly interacting system is based on the Landauer
approach. Following Ref. 2 we will focus on the effect of
electron-electron interactions on the transmission coefficient
for tunneling through a one-dimensional barrier separating
two semiplanes. We assume that the transmission coefficient
of the barrier is small, Itp! (&1, and that the barrier is homo-
geneous along the y direction. In the absence of interaction,
the current I per unit length of the barrier may be obtained
from a straightforward generalization of the Landauer for-
mula:

where ft(e eV) a—nd f„(e) are the Fermi distribution func-
tions in the left and right semiplanes, respectively, and e is
the kinetic energy of an electron. At small bias, Eq. (1) yields

I(V) = (e /27rfi)kFTpV, (2)

b tPk(x) = gk '(x,x') V,rt(x', k) Pk (x')dx', (3)

where gk (x,x') is the Green function of the noninteracting

single-electron Hamliltonian in the presence of the barrier.
For the wave incoming from x(0, Eq. (3) gives the correc-
tion of the form

Bgk(x) = (1/$27r) Bt(k)e' ~, (4)

where kz is the Fermi wave vector in the 2DEG and
Tp = (I tpI ) is the bare transmission coefficient at the Fermi
surface averaged over the directions of momenta of the in-
coming electrons. The bare transmission coefficient may de-
pend on energy, which gives rise to the well-known field
effect in tunneling. Therefore, the rhs of Eq. (2) can be
viewed as a linear term in expansion of the I(V) function,
the next term being proportional to V . Unlike this one-
particle field effect, the electron-electron interaction leads to
a stronger and nonanalytical correction to the current (2).

The existence of the barrier breaks the translation invari-
ance in the x direction, leading to the Friedel os"illation of
the electron density. Due to this oscillation, the electron-
electron interaction produces an additional potential

V,rt(x;k) that enhances the backscattering of electrons. The
corresponding correction to the transmission amplitude,
Bt(k), can be found in the Born approximation. To do this,
we notice that the component of the electron momentum
parallel to the barrier is conserved, and, correspondingly, the
electron wave function has the form W„(x,y) =e' ~Yak(x).
In the absence of the electron-electron interaction, the wave
function P„(x)=—Pk (x) is the scattering state formed by the

bare barrier potential. The correction found in the first order
in the interaction potential is
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which defines Bt(k). The nonanalytic contribution to 8t(k)
is determined by the Friedel oscillation present in the asymp-
totic behavior of the effective potential at large X. This os-
cillation is caused by the refIection off the barrier of all the
electrons forming the Fermi sea, and is characteristic for both
Hartree- and exchange-type terms in V,rt(x; k) —= VH(x)
+ V,„(x;k). The Hartree term is local,

VH(x) = U„(r—ri)n(ri, ri)«i,

and the exchange term is given by the following integral
relation:

V„(x;k)@k (x) = U„(r—ri)n(r, ri)

X Pz (xi)e'"vtY»~dri. (6)

Here U„(r—r, ) is the electron-electron interaction poten-
tial, and the electron density matrix is given by

where nF(q) = 6(kF q) is the zer—o-temperature Fermi dis-
tribution function and kF is the Fermi wave vector. The dis-
continuity in the electron momentum occupation number

n~(q) results in the Friedel oscillation of the density

n(r, r, ), and of the effective potential V,rt(x;k). The latter
becomes local,

SkF
VH(x) U (2kF) 2k

l l

3/2»n(2kFlxl + 4'7r) (8)

lt(k) I'= lto(k)l' 1 —~+ z~2[U„(0)

—U„(2k~) ]
k —kF

H(k„—k~)
F

(10)

Here we presented explicitly only the nonanalytical part of
the dependence of the transmission coefficient on the inci-
dent wave vector. The bare transmission coefficient lto(k)l

8k~
V,„(x;k)= U„(0) 2I

l

3g sin(2kFlxl+ -', 7r), (9)

for distances x from the barrier exceeding both the Fermi
wavelength kF and the range d of the potential U„(r). In
derivation of (8) and (9) we assumed that the transmission
coefficient is small,

l tol (&1, and the components of k satisfy
the conditions: lk k~l~&k„and k—Y&kz. The latter two
conditions allowed us to express the amplitudes of oscilla-
tion in (8) and (9) in terms of Fourier harmonics

U„(2kF), U„(0) of the interaction potential U„(r). Sub-
stituting now V,a(x;k) into (3), we can find the correction
b't(k, k~). The oscillation in the potentials (8) and (9) leads
to the nonanalytical at k =kz part of Bt(k,kY). The trans-
mission coefficient lt(k)l for electrons with energies close
to the Fermi level to the first order in the strength of the
electron-electron interaction is given by

and the part of the correction u-m[U„(0) —U„(2kF)]/
are regular at k=kF functions.
In order to calculate the corresponding contribution to the

conductance, we have to substitute (10) instead of ltol in
Eq. (1). The calculation then amounts to integrating the
transmission coefficient over the energies that are larger than

but smaller than ez+ eV, where ez is the Fermi energy
and e V is the applied bias. It follows from (10) that only the
electrons incoming with the momentum k larger than the
Fermi wave vector contribute to the nonanalytic correction.
At eV(&ez these are electrons moving in the small range
of incident angles almost perpendicular to the barrier,
and the corresponding bare transmission coefficient is
lto(kY=O, eF)l . Averaging Eq. (10) over all the incident
angles, we obtain the expression for the differential conduc-
tance G(V)= dI/dV —per unit length of the barrier at small
biases:

mU„(2kF)/6 (&1,

mU„(0)/fi «1.

(12)

(13)

Hence, the "bare" interaction must be weak and short
ranged. This latter condition can be implemented in experi-
ments, if a metallic gate exists very close to the 2D electron
gas. The interaction between electrons is described by the
Coulomb potential only at distances r smaller than the sepa-
ration d between the 2D electron gas and the gate. At r&&d
the potential U„(r) has a dipolar asymptotic behavior, and
the condition (13) is met if d is much smaller than the effec-
tive Bohr radius, a&= efi /me, where e is the dielectric
constant of the semiconductor. Equation (11) leads to the
following estimate of the strength of the cusp:

d G/d V= (d/az) Gosgn(e V) . (14)

In the most interesting case of a GaAs heterostructure, the
thickness of a spacer separating the 2D electron gas from the
gate normally exceeds az. We will show that at d&&a& the
proportional to the interaction strength factor d/aii in the
estimate (14) is replaced by an interaction-independent uni-
versal constant.

In the limit d&) az, for a pure long-range Coulomb inter-
action, the requirement (12) is equivalent to the condition
that the plasma parameter e /efiUF is small. This condition
is satisfied in a sufficiently dense interacting electron gas,
and the above approach correctly gives the leading order
Hartree-type contribution to the differential conductance.

m levll
G( V) =Go 1 —n+ y ~~ [U„(0)—U„(2kF)]

E'F

The nonanalytical part in (11) provides a cusp in the differ-
ential conductance at zero bias. The numerical coefficient
y=

l to(k~ = 0,eF) l /(2 vr) To accounts for the difference be-
tween the average transmission coefficient To that deter-
mines Go, and the relevant for the anomaly transmission
coefficient lto(kY=O, eF)l . The value of y' depends on the
detailed shape of the barrier, but typically @=1.

We are allowed to treat the potential energy of electron-
electron interaction as a small perturbation only under the
conditions
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Here

K =k (ky, e)=—g(2m'/6 ) k (16)

is the x component of the wave vector at a given total energy
e and at a fixed value of kY . The densities of electron states

p„(i)(ky, e) are related to the corresponding single-electron
Green functions G„(&&(x,x';ky;e) of the isolated right and
left semiplanes, respectively,

a' ~ 1
pr(l)(ky» ) = m» r(()(xx»»ky» )

OIX Ojx i 7T ) i p

(17)

The latter relation for the densities of states accounts for the
fact that tunneling occurs into the edge of 2DEG, and the
electron wave functions should vanish at the edge of an iso-
lated semiplane, G„(i)(x,x';ky; e)l„, o

= 0.
As we have shown above, the zero-bias anomaly in the

differential conductance originates from the scattering of the
incoming electrons on the Friedel oscillation. Although this
oscillation is induced by the barrier, only its tail at large
distances (-fivF/eV) from the. barrier is responsible for
the anomaly. In the many-body formulation the potential of
Friedel oscillation is represented by a specific coordinate de-
pendence of the electron self-energy X. The latter contrib-
utes to the Green function,

However, the condition (13) does not hold at any density

since U„(k~0) diverges. Therefore, the slope of the cusp
in G(V) might be not small, and the exchange contribution
to Eq. (11) must be revised. Specifically, we have to go be-
yond the perturbative single-electron picture presented above
and consider the many-body effects leading to screening of
the long-range part of the Coulomb interaction.

To incorporate the screening effects, we use the standard
relation of the tunneling current I with the product of the
densities of states, which is valid at small ital . This relation
can be cast in the form (1), if one replaces the bare transmis-
sion coefficient

l to! by the renormalized value:

2g4
T(ky e) l&o(ky ~F)l 2 2 pi(ky e)p. (ky e) (15)

4m K

(. „)Uee(qx, ky)
URpA(xi xq, ky; ~) = dq„e'q»

(iq~, ,k ye)

(19)

where k(q, ,ky; e) is a two-dimensional dielectric function
of the translation invariant electron gas (see, e.g., Ref. 9).

bG/G

Fourier harmonic diverges. The standard way to deal with
this difficulty is to sum the most singular at k~0 diagrams
in each order of the self-energy expansion in U„(k). In the
translationally invariant system it is easy to identify these
most singular diagrams, since for such a system the dielectric
function of the electron gas ~(r, —r2, e) is diagonal in the
planewave representation (see, e.g., Ref. 6). It is well known
that the described summation is equivalent to the replace-
ment of U„(k) in the formula for the leading-order contri-
bution to the exchange part of the self-energy by the effec-
tive screened interaction. The latter is given by
U„(k)/i~(k;e), where i~(k;e) is a Fourier transform of
K(ri —r2, e). In our problem, however, the translational in-
variance is destroyed by the barrier. The dielectric function
a(r„r2, e) depends not only on r, —r2, but also on the dis-
tance from the barrier, i.e., on x&+x2. Thus, the problem of
diagonalization of the dielectric function becomes nontrivial,
and the screened electron-electron interaction potential in the
vicinity of the barrier cannot be found in a closed form.

Our task is simplified by the fact that we do not need to
know this expression for the screened electron-electron inter-
action in the vicinity of the barrier. As we noted already, the
zero-bias anomaly arises due to the scattering of the incident
electrons by the Friedel oscillation far from the barrier, at
the distances -A, vF /e V. Thus, we are interested in the as-
ymptotic form of the self-energy X,(xi,x2, ky; e) at

x&,x2&)a&, XF. There the dielectric function loses all the
information about the barrier and becomes a function of
lxi —x2l only. Thus, while calculating the singular contribu-
tion to the electron self-energy, we may use the formulas for
the dielectric function and, hence, for the screened electron-
electron interaction in the translationally invariant case. In
dense electron liquid (e /efivz&~1) this screened electron-
electron interaction is well described by the expression found
in the random phase approximation (RPA):

X G (x2,x', ky, e)dxidx2, (18)

and, therefore, to the density of states. It is essential that the
self-energy in Eq. (18) depends not only on the coordinate
difference xz —x2, but also on the distance from the barrier,
i.e., on the sum of the coordinates x&+x2. Our aim is to
investigate the induced by the barrier contribution to P, to
show that it has the Friedel oscillation form, and to calculate
the corresponding correction to the tunneling density of
states. The outlined program based on the calculation of X,

enables us to generalize Eq. (9) so that the long-range nature
of the bare Coulomb interaction between the electrons is ac-
counted for.

As may be anticipated from Eq. (9), the lowest order in
electron charge e exchange contribution to X is proportional
to U„(k~0). For the long-range Coulomb interaction, this

eV/eF

FIG. 1. The schematic dependence of the differential conduc-
tance G(V) =dI/dV on the applied bias V for tunneling into the

edge of interacting two-dimensional electron gas. The amplitude of
the interaction-induced correction is proportional to the interaction
strength and small, n=e /aAU+, and the correction vanishes at
larger bias. However the cusp in G(V) at V= 0 does not depend on
the interaction strength. A smooth variation of G(V) due to the field
effect on the shape of the tunneling barrier is not shown.
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Below we concentrate on the leading-order exchange-type
term

~(xt »2 sky i &)Ix, ,x~)aa, ) F

Bp(ky., e)=(1/m )(2m/fi ) t (e—trt. k /2m —eF)"

X 8(e—A, k /2m —eF). (23)

dqyde'U„p~(x, x—2,ky q—y; & c )
J

X G~"(x, , x, ;q, ;e') (20)

since, as we already noted, in the considered dense electron
liquid (e /efivF&&1) the Hartree-type contribution is cor-
rectly accounted for by the formula (11).

It is easy to identify now the origin of the zero-bias
anomaly. In Eq. (20) all the relevant singularity information
about the presence of the barrier is delivered by the Green
function. Specifically, the oscillating part of the dependence
of $ on its coordinates originates in the oscillatory depen-
dence of the Green function on the sum of the coordinates
X&+X2.

Straightforward calculations based on Eqs. (17), (18), and

(20) lead to the following expression for the anomalous con-
tribution to the tunneling density of states:

l 4m'k„' r-
Bp(ky;e)=Im 2 4 dxe ' ~V,'„(x;ky;e) i, (21)

'7T A J d l

where

V',„(x,ky,' e) = URpA(K —kp, ky, e —ep)
e 2EkFx

(2k~x) '
(22)

wave vector K„—=k, (ky, e) is given by (18), and

URPA(q' e) = U (q)/&(q' e).
If the applied bias is small [eV((e /ejt vF) eF], we may

neglect the energy and wave vector dependence of the
screened interaction in Eqs. (21) and (22), and take

URpA(q e) URpA(0 0) . Now we note that URpA(0; 0)
=trt2/m is independent of the interaction strength. In com-
plete analogy with the problem of tunneling into a disordered
interacting 2DEG, this fact leads to universality of the cor-
rection to the electron density of states. Substituting Eq. (22)
into (21) we find for the correction to the density of states at
energies close to eF .

Thus, the anomalous exchange-type contribution of electron-
electron interaction to the transmission coefficient is given
by

BT(ky,'E) ~ ~to(ky ~F) ~' &p(ky; E)/po(ky &)

= tt~to(ky, eF)~ /m](e —fi k /2m —eF) t

X 8(e—fi k /2m —e~), (24)

where po(ky;e)=2mk„(ky;E)/mfa is the density of states
(17) for tunneling into an edge of noninteracting electron
system. Substituting (24) in (1) we find the expression for the
differential conductance to the first order on the screened
electron-electron interaction:

G(V) =Go(1 —a+ y~ e V~/eF), (25)

The authors are grateful to I. L. Aleiner for critical read-
ing of the manuscript and useful comments. This work was
supported by NSF Grant No. DMR-9423244.

where ty. -e /efivF is small and 7=1.We neglected in Eq.
(25) the Hartree-type contribution [see Eq. (11)], since its
ratio to the exchange-type contribution is of the order of

UpR~(2 kF)/ URpA(0) =e /e A v t, and therefore small.
Clearly, at a larger bias, eV~(e /aA, vt;) eF, one cannot ap-
proximate URpA(q; e) in (22) by URPA(0; 0), since the
screening is not effective at ~q~~1/att. At these biases the
exchange contribution to differential conductance becomes
comparable with the Hartree contribution, the slope of the
curve G(V) decreases, and the interaction-induced correc-
tion to the conductance eventually vanishes. The qualitative
dependence of the tunneling differential conductance on the
applied bias is shown in Fig. 1.

In conclusion, we demonstrated that a weak interaction in
the clean two-dimensional electron gas leads to a singular
contribution to tunneling into the edge of an electron system.
This singularity is characterized by a nonanalytical behavior
of the corresponding density of states near the Fermi level,
and leads to a characteristic universal cusp in the differential
conductance at zero bias.
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