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Stochastic resonance and nonlinear response in double-quantum-well structures
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Coherent motion of a wave packet in a double-quantum-well structure can be induced by irradiating it with
a weak resonant laser field. The amplitude of this motion exhibits a "stochastic resonance" as a function of the
relaxation rate in the double well and of the field amplitude. The maximum oscillation amplitude at each
temperature does not depend on the field amplitude, demonstrating the failure of linear-response theory to
describe the quantum stochastic resonance.

Stochastic resonance (SR) (Ref. 1) is an archetypal ex-
ample of a phenomenon where order is caused by random
noise. So far SR has been observed and described for over-
damped bistable classical systems and predicted for over-
damped quantum-mechanical double wells. As long as any
quantum-mechanical coherence is suppressed, both classical
and quantum SR are equally well described by the classical
rate equation approach, the only difference being the
mechanism of incoherent transitions (classical or tunneling)
between the stable attractors. The feasibility of noise-induced
enhancement of the response of quantum-mechanical sys-
tems with persistent coherences is a very important question
in connection with quantum-mechanical control of coherent
transport or chemical reactions in condensed matter or in
polyatomic molecules, where the energy sharing between
different normal modes seems to obviate use of tailored laser
pulses to achieve the desired thermally inaccessible state of
the system. Quantum SR can be defined as enhancement of
response of a driven quantum-mechanical system by quan-
tum noise. The strength of quantum noise depends on two
factors: the strength of coupling of the system to its environ-
ment and the temperature, with only the coupling strength
being variable at zero temperature.

In this paper we report a quantum SR in underdamped
bistable potentials, such as double-quantum-well (DQW)
semiconductor heterostructures, where coherent oscillations
of excitonic wave packets have recently been predicted and
observed. ' Optical control of such oscillations has been the
subject of recent experimental studies. ' We will show that
several features make the SR in these systems different from
the conventional SR: (i) The SR is achieved by varying not
the temperature but the coupling to the heat bath; (ii) the
quantum SR coexists with a regular resonance such that the
response is strongly enhanced at the resonant driving fre-
quency; and (iii) the SR also reveals itself as a maximum
response as a function of the driving field. The last property
indicates the breakdown of linear-response theory and sug-
gests that a large response may be achieved using weak
fields; in fact, we find that the optimal enhancement of the
response is obtained at a field amplitude that is proportional
to the relaxation rate of the DQW.

The system we study is a symmetric double well coupled
linearly to a continuum of harmonic oscillators. For a typical
DQW structure the splitting in the lowest tunneling doublet
is 10—100 cm, while the energy spacing between different

doublets is on the order of 10 cm, such that near or
below room temperature the upper energy levels are not
populated. We chose the laser excitation to be (nearly) reso-
nant with the splitting of the tunneling doublet such that it
also does not induce transitions to higher-lying doublets. Un-
der these circumstances the two-level system (TLS) descrip-
tion of tunneling is appropriate, ' so that the Hamiltonian is
of the form

H= —ftAo„+g p. /2mj. + 2m&to x +c/xj.spo;
J

+ Vptr, cos(cot),

where o. and o; are the Pauli spin matrices for the two-state
representation of the double-well coordinate s, 2so is the
distance between the two wells, and the amplitude of the
laser-electron interaction is given by Vo= eEso, E being the
electric-field strength. We chose parameters similar to those
reported in Ref. 8 for a GaAs/Al„Ga, As DQW structure:
sp=80 A, 5=12.7 cm

In what follows we study the steady-state dynamics of the
average position of the wave packet, (s(t)) =sp(o.,(t)). At
long times the wave packet oscillates with frequency ~ and
amplitude s&; . In the absence of coupling to the reservoir
the dynamics of (s(t)) depend on the initial condition. If the
DQW is at Boltzmann equilibrium at the moment the field is
turned on, then, using the rotating wave approximation,
(s(t)) will exhibit quantum beats that result from the inter-
ference of fast oscillations with frequency co and slow oscil-
lations with the Rabi frequency Q=Vp/fi. The maximum
amplitude that can be achieved at a given temperature iss,„=s ptanh(A 5/kriT).

Adding weak dissipation changes this picture dramati-
cally. It is natural to expect that the oscillatory behavior will
be strongly suppressed; for example, using the optical Bloch
equations for the Pauli operators in the rotating frame, ' '

( „)=—(v, /f)(, ) —(U, )(( .) —(:q)),

(o y )= (26 to )(o ) ( 1/r2) ( O'Y) + ( Vp /fi )(o ), (2)

(o;)= —(26 —to)(tr ) —(1/r2)(tr, ),
for resonant pumping, co=26, one obtains the steady-state
solution to be (tr,)=(o.y)=0 in the limit of rz ~0. Here
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soning: Starting from the Heisenberg equations of motion for
the evolution of the Pauli matrices,

a;(t) = 2a-;(t)f(t)/fi,

o y(t) = 2b, a;(t) + 2a;(t) f(t)/6,

a,(t). = —2h a;(t),

field is increased, the population difference (which results
from the competition of resonant pumping of the TLS and
energy relaxation) decreases, leading to a nonmonotonic de-
pendence of the right-hand-side of Eq. (5) on Vo.

With the approximation of Eq. (6), Eq. (5) is the standard
equation of motion for a forced harmonic oscillator with dis-
sipation. The steady-state solution oscillates with amplitude

where f(t)= Vocos(tot)+spX, cp, (t) is the instantaneous en-
ergy bias of the TLS, one obtains

4/t Vo/fi

[(~2 4/2)2+ ~&/p]1/2 ( (7)

(o;)+(2h) (a,)= —45(o;)(Vo/fi)cos(tot)

—4b, (so/fi) g cj(tr~&(t)) (4).

According to Ref. 18, the last term in Eq. (4) can be con-
verted to a damping term in the weak system-bath coupling
limit, assuming free bath dynamics and using a Markovian

approximation. As a result, a harmonic-oscillator equation is
obtained with the periodic force proportional to the popula-
tion difference (a„) between the two eigenstates of the TLS,

(a;)+(2A) (ir, )+(2/r2)(o;) = —4b (a. )(Vo/fi)cos(cot).
(5)

The weak system-bath coupling condition' used in the deri-
vation of Eq. (5) can in rinciple be relaxed using Dakh-
novskii's kinetic equation, resulting in a more general, al-
beit less tractable, theory.

To obtain an approximate solution to Eq. (5) we use the
fact that the population difference between the TLS eigen-
states, (a ), stays practically constant in the steady state, as
shown in Fig. 1. This observation suggests using the steady-
state value obtained from the rotating-wave approximation of
Eq. (2):

V', ~, ~, /|r '
(a. )i; =tanh(A, A/ksT) 1+ ~ 2, (6)

where we have used the fact that the transformation to the
rotating frame does not affect the operator o. .

Using Eqs. (5) and (6), the origin of the maximum of
s&; as a function of the field E is readily understood: as the

which exhibits maxima as a function of v.] Vp, and co. At
co=26 this result is also obtainable from the Bloch equa-
tions, Eq. (2). However, away from the resonance condition
the Bloch equations fail to predict, even qualitatively, the
correct frequency dependence of s&; . The theoretical
curves given by Eq. (7) are also presented in Fig. 2 and are in
good agreement with the results of the path-integral simula-
tion.

For resonant pumping, co=.25, the maximum oscillation
amplitude is achieved for Vo=2 t fi/r, and is equal to
2 t sotanh(Ab/AT), which differs from that in the absence
of dissipation by only a factor of order unity. This is by a
factor of approximately 26 ~& larger than the static response
to the field Vp. With weak dissipation, 2A v.&~) 1, showing
that the SR results in large "signal" amplification. Using
typical values of rt for GaAs DQW structures, ' et=1 —5
ps, the field required to achieve SR is E=0.3-1.5 kV/cm in
the case of resonant pumping.

To conclude, as demonstrated in this paper, the role of
dissipation in a driven nonlinear quantum system does not
necessarily amount to the loss of control over the system due
to destruction of coherence. Another evidence of this kind is
the noise-induced localization in a double well driven by a
resonant field. The noise-induced enhancement of order in
quantum systems may be a practical way to overcome the
difficulties that plague experimental laser control of complex
systems.
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