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Real-space adaptive-coordinate electronic-structure calculations
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We present a real-space adaptive-coordinate method, which combines the advantages of the finite-difference

approach with the accuracy and flexibility of the adaptive-coordinate method. The discretized Kohn-Sham
equations are written in generalized curvilinear coordinates and solved self-consistently by means of an itera-

tive approach. The Poisson equation is solved in real space using the multigrid algorithm. We implemented the

method on a massively parallel computer, and applied it to the calculation of the equilibrium geometry and

harmonic vibrational frequencies of the CO2, CO, N2, and F2 molecules, yielding excellent agreement with the

results of accurate quantum-chemistry and local-density-functional calculations.

Recently, important efforts in the development of pseudo-
potential ab initio electronic-structure methods have focused
on the ability to treat all elements of the periodic table on an
equal footing, and to perform efficiently molecular-dynamics
(MD) simulations. In particular, the adaptive-coordinate
method, ' proposed to improve the efficiency of the widely
used plane-wave approach, has been shown to allow for ac-
curate MD simulations including first-row elements. The
applicability of this method to the calculation of structural
properties of solids and to the computation of band
structures has also been demonstrated.

Another recent development in electronic-structure calcu-
lations, the finite-difference (FD) real-space method, has
tackled a serious drawback of the plane-wave approach, i.e.,
its inability to describe nonperiodic systems such as clusters
or molecules. This problem has been usually circumvented
by using very large unit cells in order to minimize the inter-
action between replicas of the system. However, this often
leads to very slow convergence of the results as the cell size
is increased, and can be forbidding for charged systems. The
FD real-space method is based on a discretization of the
Kohn-Sham equations, and does not imply any assumption
of periodicity of the solutions, thus allowing one to choose
boundary conditions (periodic or Dirichlet) most appropriate
to the system under study. It was pointed out in Ref. 5 that
the finite-difference approach might be well adapted to mod-
ern parallel computer architectures since it avoids completely
the use of Fourier transforms. We note that an important
feature of real-space methods is that they can lead to a
straightforward implementation of linear scaling electronic
structure algorithms I O(N) methods] within a self-consistent
density-functional approach. Such algorithms can be natu-
rally formulated in real space, since they make use of local-
ized electronic orbitals defined in domains smaller than the
entire simulation cell.

For the treatment of first-row elements, the finite-
difference approach suffers from the same inefficiency prob-
lem as plane waves. Indeed, in order to systematically im-
prove the accuracy of a calculation, the grid spacing h must
be reduced on the entire grid, even though an increased reso-
lution would be needed only in regions of rapidly varying
potential. In the case of first-row elements this can be com-
putationally very demanding. However, a local reduction of

g'=x'+ g (x' —R'.)f.(Ix—a.I),

where R denote the atomic positions and the deformation
functions f (r) are given by

a r /rl'
f (r) =A —tanh —exp —~—

r a ~b
(2)

This coordinate transformation maps a regular grid in g
space onto a curvilinear grid in (real) x space, and reduces
the grid spacing in x space near atoms. In Eq. (2) a is
the range of enhancement of the resolution around atom a,
and b determines a distance over which Euclidean coordi-
nates are recovered. The local reduction in grid spacing at
the center of an atom of species u is given by h, tt/ho
= I/(1+A ), where ho denotes the grid spacing in Euclid-
ean coordinates. The corresponding local effective energy
cutoff at the atomic site is

the grid spacing can be achieved by applying the concept of
adaptive curvilinear coordinates to the finite-difference ap-
proach.

In this paper, we present a real-space adaptive-coordinate
method, which combines the advantages of the FD approach
with the accuracy and flexibility of adaptive coordinates. The
discretized Kohn-Sham equations are rewritten in general-
ized curvilinear coordinates and solved self-consistently us-

ing an iterative approach. The method is implemented on a
massively parallel computer, and applied to the calculation of
the equilibrium geometry and harmonic vibrational frequen-
cies of the CO2, CO, N2, and F2 molecules, yielding excel-
lent agreement with the results of other accurate first-
principles calculations. Our results show that the use of
curvilinear coordinates is essential to obtain a sufficiently
small grid spacing in the vicinity of atoms, while keeping the
numerical effort limited.

Curvilinear coordinates can be chosen to be either fully
adaptive, ' ' or defined from given deformation functions as
in Ref. 2, which is more efficient in molecular-dynamics
simulations. We follow Ref. 2, and define a coordinate trans-
formation g—+x(() by
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g2 ( )2
Eeff

2m ~h,a)

The wave functions are then written as the product

(4)

where ~ag/ax~ is the Jacobian of the transformation x~g.
The function P, which was expanded in Fourier series in the
plane-wave adaptive coordinate method, is now represented
by its values on the curvilinear grid. The product representa-
tion, Eq. (4), of P has the advantage of conserving scalar
products during a change of coordinate transformation

x(g) ~x'(g). This has the important consequence that a set
of orthonormal wave functions remains orthonormal when

x($) changes due to the motion of atoms in a molecular-
dynamics simulation.

We write the curvilinear Laplacian as

a2gl apl a ( agi )

ax'ax' ax' ag' ( ax') (6)

Summation over repeated indices is implied throughout this
paper. The discretized version of 6 is obtained by replacing
all derivatives with respect to $ in (5) and (6) by finite-
difference formulas and by using the analytic expression of
a('/ax' derived from the definition of g(x). In Eq. (5), g" is
the inverse of the Riemann metric tensor and is obtained
directly from the analytic expression of ag'/axe. Note that in
Euclidean coordinates, the discretized Laplacian is self-
adjoint and positive-definite to all orders in h. On the con-
trary, the discretized curvilinear Laplacian is only self-
adjoint and positive-definite up to terms of the order of the
truncation error [i.e., O(h ), where N is the order of the
finite-difference formula]. In practical applications, this de-
parture from self-adjointness and positive-definiteness has no
noticeable effect on the convergence of the results, if the
deformation functions f are sufficiently smooth. The trun-
cation error can, however, become significant if the Jacobian
ag'/axj is varying too rapidly on the scale of the grid spac-
ing. We use finite-difference formulas of order 2 and 4 for
the discretized derivatives, i.e., three- and five-point formu-
las in each direction. Higher-order finite-difference formulas
are not needed since the reduction in grid spacing provided
by the adaptive coordinates usually brings sufficient accu-
racy. Low-order formulas also reduce the amount of interpro-
cessor communications on a parallel computer.

The potential energy operator consists of norm-
conserving, nonlocal pseudopotentials in the Kleinman-
Bylander form. The integrals associated with the local po-
tential, nonlocal potential, and exchange correlation energy
are evaluated by straightforward sums over the grid points,
appropriately weighted with the Jacobian.

The properties of the curvilinear discretized Hamiltonian
differ in many respects from those of the plane-wave Hamil-
tonian. First, the wave functions, the charge density, and the

a a ag' a
EJ

a(' ap ax ax ag' '

where we expand the second term on the right-hand side as

potentials are all represented on the same grid, whereas in
the plane-wave method, the potentials and the wave func-
tions are usually represented as Fourier series having differ-
ent energy cutoffs. Furthermore, finite-difference methods do
not rely on an expansion of the solutions on a basis set, and
the energy therefore does not obey a variational principle.
Instead, the truncation error of the energy can have an arbi-
trary sign, and in practice, the convergence of the energy to
the exact value as h~0 is often attained from belo~. Finally,
unlike in the plane-wave approach, the discretized Hamil-
tonian is not in general invariant under uniform translations
of the system with respect to the position of the grid. This
loss of translational invariance requires special care in the
convergence of the calculation if spurious forces are to be
avoided. In Euclidean coordinates, it is easily shown that
translational invariance of the energy is restored if the ionic
pseudopotential is bandwidth limited, i.e., if its Fourier trans-
form V(q) vanishes beyond the Nyquist critical wave vector

q, = m./h. In practice, since typical norm-conserving pseudo-
potentials are not bandwidth limited, translational invariance
of the energy can be recovered by either reducing h until

V(q,) becomes negligible, or by appropriately filtering the
potential. Although no simple equivalent to the Nyquist criti-
cal wave vector q, exists in curvilinear coordinates, we
found that a local reduction of the grid spacing h near atoms,
i.e., where the ionic potential has rapid oscillations, can be
sufficient to restore the translational invariance of the energy.

Within the adaptive-coordinate approach, the Poisson
equation must be solved by an iterative method, since the
curvilinear Laplacian is not diagonal in either real or recip-
rocal space. We solve Poisson's equation entirely in real
space where the discretized curvilinear Laplacian is sparse.
This allows one to work in domains of arbitrary shapes, with
arbitrary boundary conditions. It also avoids the use of
Fourier transforms, which is advantageous on massively par-
allel computers. As an iterative procedure, we choose the
multigrid method, which has the property of including an
implicit preconditioning on all length scales, and is therefore
rapidly convergent. In order to ensure the convergence of the
multigrid iteration, the discretized Laplacian operator must
be nonsingular. This can be accomplished by projecting ap-
propriately the solution out of the null space of the dis-
cretized Laplacian. For our choice of the discretized Laplac-
ian, Eq. (5), and for periodic boundary conditions, the null
space reduces to the constant function.

The implementation of the real-space adaptive-coordinate
approach was carried out on a Cray T3D massively parallel
computer, using the parallel virtual machine (PVM) environ-
ment. For simplicity, the simulation cell was divided into
domains of equal shape and size, which were distributed
among processors. Other choices could be made to improve,
e.g., load balancing of the computations. Communications
are limited to nearest neighboring processors, and only imply
the transfer of data defined on domain boundary layers. In
particular, no global communication of a function defined on
the entire grid is ever needed.

We applied the real-space adaptive-coordinate approach
to the calculation of the equilibrium configuration and of the
harmonic vibrational frequencies of the CO2, CO, Nz, and

F2 molecules, within the local-density approximation (LDA)
of density-functional theory. The experimental ' equilib-
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TABLE I. Equilibrium C-0 distance dco and harmonic vibra-
tional frequencies in CO2 calculated using the real-space adaptive-
coordinate method, compared with harmonic frequencies adjusted
to experimental spectra, and with the results of other calculations
[LDA, Hartree-Fock (SCF), configuration interaction (CISD), and
coupled cluster (CCSD,CCSD(T))]. Frequencies are given in
cm, and distances in a.u.

dco

I I I I I I I I I I I I I I I I t I I I ~ I I I I I I I-1 5~ M

2.05 2.1 2.15 2.2 2.25 2.3 2.35
C-0 distance (a.u. )

LDA'
SCFb
CISDb
CCSDb

CCSD(T)
This work

Expt. '

2.220
2.145
2.167
2.184
2.198
2.198
2.192

779
729
697
672
648
673

1513
1442
1389
1345
1336
1354

2556
2502
2432
2391
2374
2397

FIG. 1. Total energy of the CO2 molecule as a function of the
C-0 distance in the linear conformation, calculated using Euclidean
coordinates (open circles) and adaptive curvilinear coordinates
(dots). Spline interpolations are shown as a guide to the eye. The
two curves are shifted arbitrarily in order to allow for their com-
parison. The experimental value of the equilibrium C-0 distance
(arrow) and the grid spacing in Euclidean coordinates are also in-
dicated.

rium bond lengths in CO2, CO, and N2 are 2.19, 2.13, and
2.07 a.u. , respectively. Reproducing such short bond lengths,
as well as vibrational frequencies in these molecules, repre-
sents a stringent test for pseudopotentials. The description of
F2 is also a difficult test for a pseudopotential approach since
the fluorine p wave function is one of the most strongly
localized valence wave functions of all elements in the peri-
odic table.

For these reasons, we used the norm-conserving pseudo-
potentials of Bachelet, Hamann, and Schliiter, which repro-
duce accurately the atomic all-electron valence wave func-
tions already at distances of 0.8, 0.7, 0.6, and 0.5 a.u. from
the nuclei, for carbon, nitrogen, oxygen, and fluorine, respec-
tively. We first computed the total energy of CO2 as a func-
tion of the C-0 distance dco using Euclidean coordinates
and a grid of 96X72X72 points in a cell of 20X15X15 a.u.
This resolution would correspond to an effective energy cut-
off of 227 Ry in the expansion of wave functions, charge
density, and potentials in a conventional plane wave calcula-
tion. We used a five-point finite-difference formula in each
direction to compute derivatives. The resulting total energies
are shown in Fig. 1 (open circles), together with a spline
interpolation passing through calculated points (solid line).
The loss of translational invariance manifests itself strikingly
by the presence of two minima in E(dco) in the vicinity of
the experimental value of dco. The distance between the
two minima is close to the grid spacing ho, which confirms
that the oscillations in E(dco) are spurious and depend on
the relative positions of the atoms with respect to grid points.
This clearly demonstrates that the resolution used in Euclid-
ean coordinates is insufficient for a calculation of the equi-
librium value of dco.

We then repeated the calculation using the same number
of grid points and the same unit cell, but with curvilinear
coordinates, defined by the deformations given in Eq. (2)
with AC=0.258, ac=1.10 a.u. , and bc=4 a.u. for carbon,

'From Ref. 17.
"From Ref. 11.

TABLE II. Equilibrium bond lengths d and harmonic vibrational
frequencies co, in CO, N2, and F2 calculated using the real-space
adaptive-coordinate method, compared with other LDA results and
with values extracted from experiment.

CO F

d (a.u.)
LDA
This work

Expt.
COe (Clll )
LDA
This work

Expt.

'From Ref. 16.
"From Ref. 17.
'From Ref. 12.

2.162b

2.132
2.132

2151
2170'

2.08,' 2.11
2.071
2.07'

2387'
2382
2358'

2.62,' 2.63
2.635
2.68'

1075'
1051
892'

and Ao=0.989, ao=0.60 a.u. , and ho=4 a.u. for oxygen.
This corresponds to effective energy cutoffs on the atomic
sites of 360 Ry and 900 Ry for carbon and oxygen, respec-
tively. The total energies obtained with curvilinear coordi-
nates are also shown in Fig. 1 (dots), together with a spline
interpolation (solid line). The curve E(dco) has only one
minimum at dco= 2.198 a.u. , which compares well with the
experimental value of the equilibrium bond length of 2.192
a.u. The harmonic vibrational frequency of the o.+ sym-
metric stretching mode was extracted from a fourth-order
polynomial fit to E(dco). A similar calculation was car-
ried out to determine the harmonic frequencies of the m„
bending mode and of the o.„+ asymmetric stretching mode.
We note that harmonic frequencies cannot be compared di-
rectly with experimental frequencies due to the presence of
anharmonic terms in the potential energy surface, especially
for the o.+ mode, which is split by a Fermi resonance. They
can be compared, however, to harmonic frequencies obtained
from a parametrization of the potential energy surface of
CO2 adjusted to experimental spectra. ' Our calculated
frequencies are 1336, 648, and 2374 cm for the o.+,
vr„, and o.„+ modes, respectively, which compare well with
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the corresponding values extracted from experiment (1354,
673, and 2397 cm ).A summary of the results for CO2 and
a comparison with other calculations are given in Table I.

We also computed the equilibrium bond lengths and the
harmonic vibrational frequencies of the CO, N2, and F2 mol-
ecules. For N2 and F2, we used deformation functions f
yielding an effective energy cutoff of 800 and 990 Ry at the
atomic sites, respectively. Our results are summarized in
Table II, where they are compared with those of other LDA
calculations ' and with experiment. The overall agreement
with other LDA results is excellent. The agreement with ex-
periment is also remarkably good, except for F2, for which a
more accurate treatment of correlation is needed.

In conclusion, we have presented a real-space adaptive-
coordinate method for electronic-structure calculations. This
approach combines the advantages of the finite-difference
method with the capability of the adaptive-coordinate
method to treat first-row and heavier elements on the same

footing. We have shown that the Poisson equation in curvi-
linear coordinates can be solved efficiently using the multi-
grid method, and that a local reduction of the grid spacing
near atoms can restore the translational invariance of the en-
ergy. The method was implemented on a massively parallel
computer, and applied to the calculation of the equilibrium
bond lengths and vibrational frequencies of several mol-
ecules containing first-row elements, yielding excellent
agreement with other accurate first-principles results. Work
is in progress to apply the method to ab initio molecular-
dynamics simulations, and to extend it to a linear scaling
formulation.
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