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Mixed-space formalism for the dielectric response in periodic systems
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We present a useful formalism for the calculation of the polarizability and dielectric response of periodic
systems. Our approach is to introduce intermediate "mixed-space" functions with the full translational peri-
odicity of the lattice. This is a considerable advantage over existing real-space methods since the decay length
of a response function [such as e(r, r'

~
cu)] can be significantly larger than the Wigner-Seitz cell radius. Further,

we show that, in supercell calculations, these mixed-space functions decay as fast as the corresponding real-
space quantities within one supercell, so that the present scheme can be combined with usual real-space cutoff
techniques. The advantage of the present method compared to a standard reciprocal space approach is exem-
plified for the case of bulk silicon and for the case of a Si surface in a slab geometry.

We present in this paper a useful formalism for the calcu-
lation of the dielectric response of periodic systems. The
present scheme is well suited for large unit cell systems,
systems exhibiting large gradients of electronic density, or
systems with a significant amount of vacuum in the unit cell
(e.g., molecules, clusters, nanotubes, or surfaces in a super-
cell geometry). In these situations of growing importance
in modern calculations, the standard reciprocal-space
approaches ' present many drawbacks related to using a
plane-wave basis to describe large gradients of charge and to
the fact that each region of real space is necessarily described
by the same number of plane waves. On the contrary, in a
real-space approach, localized objects are easily described
and different basis functions can be used to describe different
regions of space. Another advantage of a real-space approach
is related to the decay at "large" distances of the response
functions of interest [e.g., the independent-particle polariz-
ability y (r, r') or the dielectric response e(r, r') that we
study in this work]. If R is the decay length of g (r, r'), then
for a given r, g (r, r') needs to be computed only for r'
spanning a sphere of constant radius R around r, indepen-
dent of the size of the unit cell. Therefore, the number of
y (r, r') to be calculated scales linearly with the number of
atoms N„ in the unit cell in the large N„ limit. This is a
considerable advantage over a reciprocal-space approach
where the number of EGG, needed scales as N„. A real-0 2

space approach of this kind has been recently investigated
for bulk silicon and will be referred to as the "direct" real-
space method. We note, however, that if R is larger than the
"average radius" Rws of the Wigner-Seitz (WS) cell, then
the sphere of radius R may extend over a large number of
unit cells, and the direct real-space approach becomes sig-
nificantly more costly than a reciprocal-space scheme. This
will be exemplified in the simple case of bulk silicon.

In this work, a "mixed-space" (MS) formalism for the
calculation of the dielectric response of periodic systems is
developed. We show that y (r, r'~to) and related response
functions can be written in terms of MS response functions

y~(r, r'~co), where q is a wave vector in the first Brillouin
zone (BZ). The MS response functions have the essential

quality that they are fully periodic in real space. The advan-
tage of the present method over the direct real-space ap-
proach is that we can rigorously fold the entire space into a
single unit cell. In addition, we show that the decay length of
the MS response functions is, within one unit cell, compa-
rable to its real-space counterpart. Therefore, the present
scheme can be combined with usual real-space cutoff tech-
niques when it is appropriate.

In the MS formalism, we start from the expression for the
independent-particle polarizability y (r, r'~to) in terms of
the eigensolutions (a;, t/I;) of a one-electron Hamiltonian
[e.g., the Kohn-Sham Hamiltonian in the local density ap-
proximation (LDA)],

where r/ is a positive infinitesimal number. Taking the (i,j)
pairs of states to be the usual (nk, n'k') Bloch states, it is
straightforward to show that

with

yq(r, r'~to) = g (f~,a+, f. ,a)—
n, n', k

u„*„+ (r)u„„(r)u„*,„(r')u„„+q(r')
X

n, k+q n', k+ ~+~ V

(3)

where the u's are the periodic part of the Bloch states. There-
fore, the y 's are periodic in space with respect to both r and
r' separately and need only be calculated within one unit
cell. In the following, the variable g refers to a real-space
coordinate restricted to a single unit cell. We emphasize that
the combination of Eqs. (2) and (3) is just a partitioning of
the double sum over states in Eq. (1) and does not introduce
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any additional BZ summation. Similarly, we define a MS
dielectric function eq(r, r') by the equation

f
eq(& &') = ~((—&') — ~rl&q(( &1)xq(sl, &'), (4)

&ws

where V is related to the original potential V through an
Ewald summation,
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over the lattice vectors R. In particular, the integral in Eq. (4)
is restricted to a single unit cell. Special care must be taken
when using Eq. (5) in the long-wavelength limit and for

~ (—(~ ~
going to zero. The inversion of eq((, g'), which may

be performed entirely in real space, yields e (g, g'). The
MS inverse dielectric responses e s are simply related to
their real-space and reciprocal-space analogs via an Ewald
summation or Fourier transform (FT).

The approach is erst applied to bulk silicon. The electron
wave functions are generated in a plane-wave basis with ki-
netic energy up to 14 Ry using a standard pseudopotential
LDA calculation. The wave functions are then Fourier trans-
formed into real space onto a 18X18X18 grid in the unit
cell. To test convergence, one grid point out of n is kept in
each direction to build the real-space grid on which

g (f,g'), eq(f, g'), and e '(g, (') are calculated. With
n=3 (e.g. , a 6X6X6 grid in the unit cell), the dielectric
response, including local-field effects, is accurately de-
scribed. To check this, we Fourier transform to reciprocal
space the e '(s, j') 's as calculated in the MS formalism and

compare the resulting matrix elements W [e '((,g') jG G to
the corresponding e (G,G ') 's as calculated within a
reciprocal-space approach. In Fig. 1(a), the diagonal ele-
ments are compared for q= X. The agreement is excellent up
to ~q+ G~ ~ 3 a.u. , which is the usual cutoff used to termi-
nate the dielectric matrix in reciprocal space for bulk silicon.
In Fig. 1(b), the nondiagonal elements W[eq (g, g )]G G

are plotted against the corresponding ez G, (q)'s. The result-

ing points land nicely on the first diagonal, indicating how
accurately the MS scheme describes (with a 6X 6X 6 grid in
real space) the local-fields contribution to the screening
properties.

We compare now, in the case of bulk silicon, the perfor-
mances of the MS approach with respect to the reciprocal-
space approach of Ref. 2. We note that the size of a

y (G,G'!co) matrix, with a !q+G~ — 3 a.u. cutoff, is
—120 X 120, that is, significantly smaller than the 216
X216 yq(s, g'!co) matrix we calculate in the mixed-space
approach. However, while a small cutoff (G,„=3 a.u.) is
used to truncate the dielectric matrix, in the reciprocal-space
approach a larger cutoff (typically E,„,=10 Ry) is needed to
expand the LDA wave functions involved in the matrix ele-
ments (v, k!e 'Iq+ I'!c,k+q) which couple valence bands
to conduction bands. In addition, such matrix elements are
convolution products in reciprocal space. In contrast, as seen
in Eq. (3), in the MS approach, the numerator of each

g (g, g') is a direct product of wave functions and the same
grid (that is, the same "cutoff") is used for the dielectric
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FIG. 1. (a) The diagonal elements of e '« for bulk silicon are
plotted as a function of!q+G! in a.u. (left vertical axis and filled

hexagons). The corresponding error in % between eG'G(q =4) and

W[E «((,( )]GG is also given (right vertical axis and empty tri-

angles). (b) The nondiagonal elements of eG o, (q=X') are plotted
as a function of the corresponding W[e «(g, g')]Go nondiago-
nal elements. The solid line is a guide to the eye for the first diag-
onal.

matrix and the LDA eigenstates. We find that the calculation
of an entire y (g, f' ~

co) matrix takes an average of 16 s on a
Cray C-90 computer. This is comparable to the performance
of our reciprocal-space code (-15 s) for the calculation of
x',(G G'I ~).

To compare the present MS approach to the direct real-
space approach, we plot in Fig. 2 the number of (r, r') pairs
needed in each approach as a function of the real-space cut-
off radius selected. We use a 6X 6X 6 grid in the unit cell that
is repeated over the entire space. In the direct real-space
approach, the variable r can be restricted to the irreducible
wedge of the unit cell while r' spans a sphere of radius
R,„around each r. As a consequence, the number of
(r, r') pairs needed scales as R,„ in the direct real-space
approach (dashed line). In the MS approach, for the calcula-
tion of y, the variable r= j can be restricted to the irreduc-0

ible wedge of the BZ associated with the small group of q.
However, the number of r' = g' needed saturates quickly to
the maximum of grid points in the unit cell and does not
increase with R „as soon as R,„becomes larger than the
average WS cell radius. This is illustrated in Fig. 2 in the
three following cases: q is at the center of the zone I (lower
dotted line), q has no symmetries (upper dotted line), and

q samples a 4X4X4 Monckhorst-Pack grid (solid line). In
this last case, the average number of pairs per q point is
plotted. We note again that each yq(f, g'~!co) is associated
with a single BZ summation while the calculation of
g (r, r'!co) requires a double BZ summation. As a conse-
quence, Fig. 2 really compares the actual computational ef-
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FIG. 2. Number of (r, r') needed in the case of a 6X 6X 6 grid
in the fcc Wigner Seitz (WS) cell. The long dashed line (with the
label "real-space ~ ") corresponds to the real-space approach. The
solid line (labeled "q=4X4X4") corresponds, in the present MS
approach, to the average number of pairs sampled for q's on a
4X4X4 Monkhorst-Pack grid in the BZ; the upper dotted line (la-
beled "q arbitrary") corresponds to the case where q has no sym-
metries; and the lower dotted line (labeled "q=I'") applies when

q is at the center of the zone.

fort of the two methods. In the case of bulk silicon, a real-
space cutoff of 18 a.u. is used (see Ref. 3 and below). For
this value of R, it is clear that the MS approach, in all
cases of BZ summations, yields a significant saving on the
number of (r, r') pairs for which the summations over va-
lence and conduction bands must actually be performed.

An important issue associated with the MS approach is
the decay of the MS response functions in real space in the
limit of large supercells. To address this question, we study a
H/Si(111)-(1X 1) surface in a 14-layer slab geometry. As in
the case of bulk silicon, we obtain the LDA wave functions
using a standard pseudopotential plane-wave approach and
then Fourier transform these wave functions onto a grid in
real space. Details for the slab geometry, energy cutoff, and
pseudopotentials can be found in a previous report, where we
calculated the dielectric response of the H/Si(111)-(1X1)
surface using a reciprocal-space approach. We find that a
6X6 X 36 real-space grid in the unit cell is sufficient to de-
scribe the dielectric properties of this system. Further, we
find that basically all of the grid points located in the vacuum
between neighboring slabs can be removed from the grid.
Indeed, we verify that the resulting grid yields
W [g (g, f')]G G

's that are in excellent agreement with the

y (G,G') calculated in reciprocal space.
The absolute value of gz r(g, g') as a function of

g'~ for the H/S—i(111)-(1X1) surface is presented in Fig.
3. The real-space range of the MS y & is significantly
smaller than the maximum distance

~ (—('
~

allowed by the
unit cell size (-44 a.u. in the present case) and a real-space
cutoff R=18 a.u. can be used which keeps the calculated

W[gz(f, (')]~G 's in excellent agreement with their origi-
nal value. This cutoff is the same as the one used in Ref. 3

FIG. 3. Value of )y r(g, g')
~

as a function of
~ f g'

~

—for a
H/Si(111)-(1X1) 14-layer slab.

~ g &(g, f')~ is normalized by
its value at ((—(')=0.

for bulk silicon in a direct real-space method. Thus, the de-

cay length of the g (f, f')'s is comparable to the one of
y (r, r'). For q=X in the two-dimensional surface BZ, we
find that it takes —18 min on a Cray C-90 computer to
obtain the entire g (f,g') matrix. In reciprocal space, the

calculation of the entire yz(G, G') (which is a 998X998
matrix for the selected cutoff G,„=3a.u.) takes -43 min.
We find therefore a 2.4 ratio in favor of the present MS
approach. Greater gains in efficiency are expected in the
limit of larger systems.

Since in the limit of large systems the number of ((,g')
pairs to be considered scales linearly with the number of
atoms N„ in the unit cell, the summation over valence and
conduction bands for all (g, g') pairs requires an overall scal-

ing of N„ for the MS approach. This can be compared to the

N„scaling of a reciprocal-space approach. Therefore the
present method has significantly better scaling properties
than the reciprocal-space approach, with a crossover between
the two methods which occurs for systems as small as bulk
silicon. We note that a direct real-space method offers also a
N„scaling. However, as exernplified in the case of bulk sili-
con, the "prefactor" associated with the direct real-space
method is much larger and it is not clear in practice at which
system size the direct real-space approach will become pref-
erable over a standard reciprocal-space method.

Finally, for the systems studied above, we find that the
calculation of ez((, g') using Eq. (4) and the inversion
needed to calculate e ((,(') are fast as compared to the
time spent to build gz. We note, however, that a standard
matrix inversion yields an N„scaling. Therefore, as noted in
Ref. 3, even if an imaginary-time technique is used to de-
couple the summations over valence and conduction states
when calculating y„, the necessity of accounting for the
local-Geld effects in calculating e& would still keep the
overall scaling of the method to a N„scaling.

In conclusion, we have presented a useful approach to
calculate the dielectric response in periodic systems. In the
limit of large systems, the present method scales as N„
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{where N„ is the number of atoms in the unit cell), as com-
pared to the N„scaling of a standard reciprocal-space ap-
proach. In the case of silicon, we 6nd that the crossover
between the MS and reciprocal-space methods occurs for
unit cells as small as that of bulk silicon. Further, we found
that a significant saving can already be gained in the case of
a moderately large H/Si{111) slab system. In addition, we
have shown that the present method is preferable over a di-
rect real-space method. This scheme should allow dielectric
response calculations for large-scale systems. %'e note that
the present formalism can be straightforwardly combined

with an imaginary-time technique and extended to quasipar-
ticle energy calculations in the GW approximation. '
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