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Photonic band gaps in a two-dimensional graphite structure
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We present a design of two-dimensional periodic dielectric structures that gives rise to absolute band gaps
common to E and 0 po1arized waves. This structure is formed by an arrangement of parallel cylindrical rods
centered at the vertices of regular hexagons. We show that two absolute band gaps exist for lattices of dielectric
rods in air. Potential application of this structure at the subrnicrometer length scale is discussed.

It is well known that the presence of periodic potential
introduces energy gaps at Bragg planes and prevents the

propagation of waves with energy lying in these gaps. The
properties of electronic waves in crystals have been inten-

sively studied, and the electronic band structure expresses
the relation between the energy and the wave vector of the
Bloch waves. It has been proposed' that dielectric struc-
tures with periodic variation of the dielectric constant should
give rise to similar phenomena for the propagation of the
electromagnetic ~aves, so long as the wavelength is compa-
rable to the spatial periodicity. This appealing analogy has
led to numerous works since the suggestion that such sys-
tems could inhibit spontaneous emission and improve the
performance of optical devices. The experimental realiza-
tions of photonic band gaps (PBG's) have first been confined
to the microwave region for which the wavelength is of the
order of a millimeter and the existence of PBG's has been
observed in three-dimensional (3D) structures. The difficulty
in the fabrication of these materials at optical-length scale
prevents, at the present time, the realization of such struc-
tures for submicrometer wavelength; they are particularly at-
tractive because they present gaps in the near infrared. In this
frequency range, 2D structures obtained as periodic arrange-
ments of parallel dielectric rods have recently begun to re-
ceive some attention. For in-plane propagation, two types of
electromagnetic modes can be defined according to whether
the electric (F. polarization) or magnetic (H polarization)
field is parallel to the rod axis. Several structures have been
found to yield PBG s for either polarization. Indeed, it is
difficult to obtain structures in which the two kinds of gaps
overlap, inhibiting the in-plane propagation of the light what-
ever the polarization. Among the various structures recently
considered, the triangular lattice of air cylinders in dielectric
materials was found to possess interesting PBG's for a large-
volurne fraction of air. Theoretical investigations have
been performed to optimize the lateral design of these lat-
tices by reduction in the lattice symmetry and by changes in
the shape of the cross section of the rods. Beyond the diffi-
culties of realizing such structures, these studies have shown
that any deviation from the circular shape of the cylinders
reduces the width of the gaps, and the triangular lattice of
hole cylinders with a circular cross section appears as a good
design to realize 2D PBG materials. To obtain a large abso-
lute band gap, the cylinder diameter must be close to the
lattice parameter. Such structures require the etching of cyl-
inders separated by very thin semiconductor layers, which is
difficult to realize. To avoid this inconvenience, another pos-

sibility of having large band-gap structures can be researched
in the modification of the structure factor, which only de-
pends on the disposition of the cylinders in the unit cell and
not on the shape of their cross section. This internal structure
can vary the properties of the photonic crystal without
changing in the Bravais lattice, which can remain hexagonal.
Taking advantage of this situation, we propose in this paper a
design for 2D structures that gives rise to large absolute
PBG's and avoids the fabrication of thin layers. This struc-
ture is derived from the triangular lattice by the removal of
one every third cylinder, so that the 2D graphite structure is
obtained with cylinders centered on the vertices of a plane
lattice of hexagons. Our calculations show that two absolute
band gaps are achieved in the graphite structure of GaAs
rods in air when the diameter of the cylinders-to-lattice con-
stant ratio varies in a large range, far from the close-packed
condition.

To determine the photonic band gaps, we study the propa-
gation of the electromagnetic waves from the Maxwell equa-
tions. In inhomogeneous dielectric materials, the magnetic
field H(r) is

V X [ r/(r) V x H(r)] =
2 H(r),

where k is the wave vector in the first Brillouin zone and

G are reciprocal lattice vectors. ez denotes two unit vectors
perpendicular to k+G. So, the problem is reduced to an
eigenvalue equation solved by numerical techniques. In the
following, we investigate the in-plane propagation of electro-
magnetic waves in 2D lattices of cylinders perpendicular to
the x,y plane of the lattice. Two different polarizations E
(H) have to be studied according to whether the electric
(magnetic) field is parallel to the cylinders. The eigenvalue
equation can be separated into two equations:

2)
det M—

2 =0,c (3)

where

where rI(r) is the inverse of the dielectric constant. Because
of the relation V.H(r) =0, H(r) is transverse. For periodic
systems, it can be expressed as a sum of plane waves:
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m(G, G') = Ik+ GI!k+G'I &(G—G')

for the E polarization, and

M(G, G') =(k+G) (k+G') rt(G —G')

for the H polarization.
Here, rI(G) is the Fourier transform of the inverse of

e(r). The difference between the two polarizations lies in
the fact that M(G, G') depends on the scalar product of the
two vectors for the E polarization and on the product of their
modulus in the H polarization. The summation on the recip-
rocal lattice only depends on the Bravais lattice, whereas for
the same Bravais lattices y(G) varies with the exact symme-
try of the configuration. Consider a lattice with a unit cell
formed by N, identical cylinders of material characterized by
the dielectric constant e, , centered on uJ positions and em-
bedded in a background of dielectric constant eb. rg(G) is
given by

y(G) = eb BGo+ 5(G) rg (G),

where S(G) is the structure factor

Nc

g(G) = g e 'G'"j
J= 1

(6)

FIG. 1. Two-dimensional graphite structure. ~& and v2 are the
primitive lattice vectors.

and ri, (G) corresponds to the Fourier transform for a cylin-
der centered at the origin. For cylinders with circular section,
the Fourier transform rg, (G) only depends on the modulus
G. Some other shapes of the cylinder section have been con-
sidered in order to optimize the photonic band gaps. How-
ever, any deviation from the circular form reduces the width
of the superposition of the E and H band gaps. The various
arrangements of the cylinders in the unit cell correspond to
different structure factors and give an additional parameter to
modify the Fourier transforms for the same Bravais lattice.
This provides a potential for tailoring PBG materials while
conserving the lattice symmetry, which is important to obtain
large gaps.

The 2D periodic structure shown in Fig. 1 allows us to
describe the configuration studied in this work. By analogy
with the crystal structure of the graphite, we call graphite
structure this two-dimensional arrangement of Hexagons.
There are two cylinders of radius R, per unit cell at the
positions u& and u2. If we only consider nonoverlapping
cylinders, the maximum filling factor P=60% is reached
when the cylinder diameter is equal to the distance a be-
tween the centers of two nearest-neighbor cylinders. We ex-
amine the two following configurations. The first one con-
sists of hole cylinders (e,=1) in a material of dielectric
constant eb= 13.6, which corresponds to GaAs. The second
one is formed by cylinders of the same material in air. We
have chosen GaAs because this material presents interesting
optical properties in the infrared domain and is representa-
tive of many semiconductors. This limitation is not essential
and calculations on other systems of the same nature give
similar results. We use 475 plane waves in the calculation,
which ensures sufficient convergence for the frequencies of
interest for studied structures. Hereafter, we denote by
E; (H;) the gap that occurs between the ith and (i+1)th
bands for E (H) polarization.

Figure 2 shows the gap variation up to the close-packed
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FIG. 2. Photonic band gaps for E polarization (solid line) and H
polarization (dashed line) of a graphite structure of air cylinders in
GaAs as functions of the ratio R, /a. The absolute band gaps are
represented in black.

configuration of the cylinders. The first gap only appears for
R,= 0.2a whereas most of the other gaps open for
R,=0.3a. The gaps occurring for the E polarization get
broader with increasing values of R, , the maximum value
being obtained for close-packed cylinders. Two gaps H3 and
H5 exist in H polarization in the same frequency range. The
H5 gap lies to higher energy and its maximum relative width
of 15%%uo is reached for 0.46a. These gaps close for small and
high R, values. No absolute PBG resulting from the super-



52 PHOTONIC BAND GAPS IN A TWO-DIMENSIONAL GRAPHITE STRUCTURE R2219

0.6- 0.9

0.5 ——

0.4 - ,

~ 0.3-
3

0.2-

0.1-

(I I I II ~ 8

0.8-

0.7-

0.6-

~+ 0.5-

p 0.4-

0.3-

0.2-

0.1 i

E,

H,
H,
H,

Q
0.1

I

0.2 0.3
R, /a

0.4 0.5

FIG. 3. Photonic band structure for E polarization (solid line)
and H polarization (dashed line) of a graphite structure of GaAs
cylinders in air for P= 30%. The symmetry points are labeled using
the Lommer notations (Ref. 9) kp = (2 w/a g3)( 3,0),
ko = (2 '/a +3)(L1/2+3).

FIG. 4. Photonic band gaps for E polarization (solid line) and H
polarization (dashed line) of a graphite structure of GaAs cylinders
in air as functions of the ratio R, /a. The absolute band gaps are
represented in black.

position of the E and H gaps exists apart from a weak over-
lap of Es and H5 lying in a very small range around
R,=0.45a. The photonic band structures for lattices of air
cylinder in dielectric material present some similarities with
the band structure of triangular lattices of dielectric cylinders
in air. Results for E polarization have the same features as
those obtained for triangular lattices. In particular, the se-
quence of the states and the opening of the gaps are the
same. This resemblance can be easily understood from the
geometric disposition of the cylinders in the graphite struc-
ture. For a close-packed arrangement, this configuration is
equivalent to a triangular lattice with lattice constant a+3,
formed by dielectric rods with a noncircular section.

We have also examined the case of a graphite structure
formed of cylindrical GaAs rods in air. In Fig. 3, we display
the photonic band structure of such a lattice for 611ing factor
P=30%. Three gaps Eq, E6, and E7 are present in the
energy range considered. The Ez and E6 gaps result from the
lifting of the degeneracy of the same free-photon state at I
point. The photonic band structure calculated for H polariza-
tion shows two gaps H3 and H5 larger than for a lattice of
hole cylinders with the same 611ing factor. The variation of
these gaps as functions of the radius of the dielectric rods is
represented in Fig. 4. The most important result is the ap-
pearance of absolute band gaps, unlike the triangular struc-
ture, which exhibits no absolute PBG for GaAs rods. They
exist in a limited frequency range and their widths present
maxima which can be large. The lowest gap resulting from
the overlap of E6 and H3 gaps is centered near
cuba/2mc=0. 37 for R,=0.35a (p=30%) with a 10% rela-
tive width. A second absolute band gap of the same width is
obtained for boa/2mc=0. 55 for R,=0.25a (p=15%) by
the superposition of E7 and H5 gaps. Finally, a smaller gap
due to E6 and H5 gaps lies in the neighborhood of the latter
one. The appearance of these gaps is essential and shows that

the graphite structure of dielectric rods is a good candidate
for the realization of the PBG materials. These values can be
compared to the results obtained for the triangular structure
of hole cylinders in GaAs. The PBG is centered for this
structure near boa/2mc=0. 40 for a filling factor p=76%,
which corresponds to R,=0.45a. As p is the fraction of the
total volume of the structure occupied by the rods in lattices
of hole cylinders, the relative part occupied by the dielectric
material is 1 —P=24%. This proportion of material is
close to the value obtained for the center of the E6-H3 abso-
lute band gap in the graphite structure of dielectric cylinders;
as a consequence, the mean dielectric constant is the same in
the two structures. In the submicrometer range, it is possible
to center the E7-H5 absolute band gap in the near infrared at
X.=0.9 p, m by realizing the graphite structure of GaAs rods
of R,=0.12 p, rn distant by a = 0.50 p, m. The same analysis
for the E6-H3 absolute band gaps gives a=0.34 p, m and
R,=0.12 p, m. In these two structures, the diameter of the
rods equal to 0.24 p, m is large and does not require etching
of thin dielectric layers.

We have presented a design of a 2D PBG crystal. This
structure is formed by an arrangement of parallel dielectric
rods of circular cross section, the centers of which are at the
vertices of regular hexagons. Two absolute band gaps result-
ing from the overlap of E and H polarization band gaps are
obtained for the rod diameter, which avoids the tricky
achievement of thin dielectric layers. The existence of two
photonic band gaps gives a further flexibility to optimize the
dimension of the lattice parameter for a given value of the
wavelength, or, inversely, to have two forbidden energy
ranges when the geometry of the structure is fixed. These
gaps fall into the infrared domain for reasonable values of
the rod diameter. It is hoped that the fabrication and the
experimental studies of such photonic crystals will be real-
ized to compare with the theoretical results of this study.
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