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Landau-level mixing and extended states in the quantum Hall effect
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We study the energies of extended states for two coupled Landau bands within a network model as a

function of 6, the bare energy separation of extended states in the absence of level mixing. As 5 increases the

energy separation of the extended states becomes less than the bare energy separation, i.e., at high-level

separation, level repulsion changes into level attraction. The level attraction leads to a minimum in the energy
of the lower state at a finite magnetic field, consistent with level fioating at low fields. For a spin-split Landau
level we predict level attraction at high magnetic fields.

The existence of extended states is a necessary condition
for the quantum Hail effect. In strong magnetic fields it is
well established that the energies of extended states are on
the corresponding Landau levels E„=(n+-,')fi ,co, where

~, is the cyclotron frequency. On the other hand, it is be-
lieved that all states of a disordered two-dimensional (2D)
system should be localized in the absence of a magnetic
field. Therefore a "floating scenario" has been suggested by
Khmelnitskii and Laughlin in which at low magnetic fields
the energies of extended states increase, or float above the
Fermi level, and all occupied states become localized. Nu-

merical studies of a few Landau bands focused on critical
exponents, except for an early work by Ando that supports
the floating scenario. Ando s work used 6 function impuri-
ties, which is, however, not suitable when the impurity con-
centration is too low, since bound states of the 8' potential
shift the extended state even for a single Landau band. It is
therefore of interest to study a system with smooth poten-
tials, which is valid for both strong and intermediate mag-
netic fields.

In a number of recent experiments a transition from an
insulator at low magnetic fields B to a quantum Hall conduc-
tor at finite B was demonstrated, consistent with the floating
scenario. A recent experiment by Glozman, Johnson, and

Jiang relates energies of extended states to positions of
peaks in the longitudinal conductance o. , which are then
measured as a function of magnetic field. It was demon-
strated that, indeed, the lowest extended state floats up at
low B.

In the present work we use a two-channel version of
Chalker and Coddington's network model, ' which was pre-
viously used to study a spin-split Landau level. Electrons
move along unidirectional links that form closed loops in
analogy with semiclassical motion on contours of constant
potential. Nodes correspond to regions in space where two
classical contours approach one another, i.e., nodes are
saddle points in the potential. At nodes tunneling must
complement the semiclassical motion so that scattering at
nodes couples states on neighboring links. The assumption
that each link carries current only in one direction implies
that the wave packets are sufficiently localized in the trans-
verse direction, i.e., the magnetic length is small in compari-
son with the spacing of nodes or with the correlation length
of the potential fluctuations. The network model is therefore

Propagation along links is described by blocks U;, each U;
depends on random phases P; (i = 1 —4) and on a mixing
angle y between channels
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The 2 X 2 matrices C, S describe the scattering at each node
within each channel, i.e., C, S are diagonal.

To parametrize scattering at nodes we consider nodes as
saddle-point potentials Vsp(x, y)= —Ux +Uy +Vo in a
magnetic field B. (The results below can be easily extended
to allow anisotropy in the x,y coefficients. ) The scattering
states are well known —they are labeled by the energy E
and by an integer quantum number n ~0. The transmission T
is diagonal in n and is given by

1
T= 1+exp( —7re)'.

where e= (E—(n+——,')Ez —Vo]/E, , and
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with co, =eB/mc The oscillator freq. uency E~ is

1 64U
E,=. . .+1
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Our two channels correspond to either two Landau levels
with n = 0,1 or to two spin states with n = 0 and

Vp = —,'g p,B, where g is the electron g factor and p, is
the Bohr magneton. The application to n = 0,1 Landau
levels assumes that mixing of states with n's differing by

a strip whose width has M/2 links with two channels per link
and scattering of states on two neighboring links is allowed
at M/4 nodes.

The transfer matrix at each node is a 4 X 4 matrix that
transfers four states (on two links) on the left to four states
on the right and has the form ' "

/U, 0) tC S~(U, O
T=

40 Uzj kS C/ 40 U4
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An = 2 is much smaller than for those with An = 1. Mixing
or transition rates can be evaluated for a potential of the

form (1/2)U(x +y ) —Uy /X. , where lI is a measure of
the correlation length of the random potential. For states
near the local minimum we find that mixing is
-exp[ —b,n(mcu, /U)ln(k//)], where 8 is of the order of the
magnetic length. We therefore expect our results for the n = 0
state, within the two-channel model, to be valid down to
mru, /U=1 (assuming U= U) with a lower limit for longer-
range potential fluctuations. The results for the n=1 state
are, however, not directly relevant.

We parametrize the two states by e and e—5, where
D, =E2/Ei for two Landau levels or h=gpB/Et for two
spin states. The transmission Eq. (3) determines then the fol-
lowing transfer matrix in Eq. (1):

( $1+exp[ —7r(e —5)]

i exp[ —7r(e —5)/2]
0

$1+exp[ —rate]/

0

exp[ —~e/2] i
'

apart from phases that are absorbed in the U; matrices. [Note
that the conventional 0 parameter"' ' for the e channel is
determined by e= —(2/m)ln(sinh8). ]

We note that unlike discrete Landau levels, the saddle-
point potential allows for a continuous energy E for each
discrete state n. Furthermore, for ~,&& y E&~0 and
E2~ A, tu, (n+ 1/2) + Vo correspond to the usual discrete Lan-
dau levels. In the opposite limit of ~,&(y the integer n cor-
responds to a quantum number of the harmonic potential
Uy2

In the absence of level mixing we know from results of
the one-channel system that a=0 corresponds to extended
states. This defines "bare" extended states at E,
=E2(n+1/2)+ Vo, which can be considered as Landau-
level extended states in the presence of the saddle-point po-
tential. The bare energy splitting of the n =0,1 states is E2,
which is magnetic-field dominated at ru, (m/U)U )1 and is
potential dominated at ru, (m/U)'~ (1, i.e., remains finite as
co,—+0. The latter region is acceptable for a network model if
the correlation length of the potential fluctuation is long
compared with the magnetic length, so that locally the
saddle-point potential determines a finite splitting.

The topology of the network implies that refIection at one
node becomes transmission at the next mode. The system is
then, on average, invariant under 90 rotation if at the next-
neighbor node the transmission and reflection (of each chan-
nel) are interchanged, i.e., e~ —e and e—A~ —a+ A. The
system is therefore symmetric under e—+ —e, A~ —6 and
the extended states at e; (i = 1,2) satisfy e;(—5) =
—e;(b). A further translation of energies by 5 returns the

system to itself except for 1+-+2 interchange,

e2( —5)+5 = e, (A); hence ei 2 are constrained by the con-
dition e, + e2=4.

For a strip with M/2 links in the y direction we build the
M XM transfer matrix to describe the transfer of M channels
so that each node has the form of Eq. (1) and periodic bound-

ary conditions in the y direction are used. The M XM trans-
fer matrices are then multiplied to generate Lyapunov expo-
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FIG. 1. Renormalized localization length (~ /M as a function of
e for 5=2.2 and M=32.
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FIG. 2. Critical values e as functions of A. Full lines are ener-
gies of the bare extended states a= 0 and e= A.

nents for a strip with length typically of 60 000; the smallest
exponent is the inverse localization length. Finally, we use
finite-size scaling for fitting gM/M onto a single curve

f[g„(e)/M] for various M and e. The localization length

(„(e) of the 2D system identifies critical energies e; and a
critical exponent v by („(e)—

~

e —
e;~

Our simulations used M=16,32, though for 5=0 and
6 = 2.2 we used also M = 64, which affected critical energies
by 3%; the 5=0 are also within 5% from the result of
Wang et al. We choose the mixing parameter sing to be
uniformly distributed in the interval [0,1]; we checked that
other distributions in sincp lead to similar results. The raw
data for one particular 5 (see Fig. 1) represent the character-
istic features of the system. One can see that (M(e) is indeed
a symmetric function around 5/2=1. 1. Furthermore, for
5~1 we obtain two pronounced maxima of (~ /M, which
are near the critical energies; we also find v=2.5~0.5.
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