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Transport in an inhomogeneous interacting one-dimensional system
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Transport through a clean one-dimensional wire of interacting electrons connected to semi-infinite
leads is investigated using a bosonization approach. An incident electron is transmitted as a sequence

. of partial charges. The dc conductance is found to be entirely determined by the properties of the
leads. The dynamic nonlocal conductivity is rigorously expressed in terms of the transmission. For
abrupt variations of the interaction parameters at the junctions, the central wire acts as a Fabry-
Perot resonator. When one of the connected wires has a tendency towards superconducting order,
partial Andreev reflection of an incident electron occurs.

Due to advances in semiconductor microtechnology it
is now possible to fabricate high-mobility quantum wires
that are very close to being ideally one dimensional. '

In one-dimensional electron systems interactions play a
crucial role, giving rise to the so-called Luttinger liq-
uid behavior. ' Transport measurements are a possible
method to test theoretical predictions. For example, ap-
plying an electric field over a Gnite segment of a ho-
mogeneous infinitely long wire, Kane and Fisher find
(for spinless electrons) a conductance g = goK, where

go
——e2/h is the conductance quantum and K is a nonuni-

versal number depending on the interactions in the wire.
However, it seems more reasonable to describe a two-
probe measurement by connecting the interacting wire
to two long leads intended to mimic the role of reser-
voirs where the chemical potential is fixed. This type of
idealization was often used in theoretical work on trans-
port in mesoscopic devices. This work continues on the
path paved by Landauer, who relates the conductance
of a coherent device to the transmission T'of an incident
electron on the device viewed as a scattering entity. De-
pending on assumptions about the measuring procedure
one finds either6 7

g = gOT

or Landauer's original result, ' g = goT/(1 —T) (T is
the transmission coefficient). Equation (1) agrees with
the conductance of a one-channel ballistic constriction
for which T = 1. In Landauer-type theories, interac-
tions are mostly ignored, i2 or at least are accounted for
by a phenomenological time larger than the character-
istic time to cross the sample. It is our purpose to in-
clude interactions explicitly and to investigate the trans-
mission processes through a finite wire as well as the
efFect of the contacts on its transport properties. Con-
fined to one-dimensional sample and leads, our electrons
are interacting everywhere, but in general with difFer-
ent strength in the leads and in the sample. We will
not consider disorder, and deal with the nonlocal time or
frequency-dependent conductivity, containing much more
information than the bulk conductance. Also, due to the
space-dependent interactions, phenomena familiar from
metal-superconductor contacts like Andreev reflection
and the proximity efFect will be seen.

Momentum-conserving interactions between spin-
less electrons can be described by the bosonized
Hamiltonian, '

~ diI = uK(B O)2+ —(cj 4)2
2x (2)

where the boson Geld 4 is related to the particle den-
sity by p —po —— 04/—rr, and 0 0/rr is the moinentum
conjugate Geld to 4. The interaction-dependent param-
eter u determines the velocity of the elementary exci-
tations, and K (also interaction dependent) determines
the algebraic decay of correlation functions, indicating
a tendency of the Luttinger liquid towards either super-
conducting or charge-density-wave order, depending on
whether K & 1 or K ( 1. A "Fermi liquid" is found
for the noninteracting case, K = 1, u = v~. We now
consider a finite interacting wire perfectly connected to
two identical leads at its end points ka. We shall label
the quantities pertaining to the leads (central wire) by
the subscript 1 (2). In II the parameters u, K then vary
from u2, K2 in the wire to ui, Ki outside. We use peri-
odic boundary conditions; i.e. , we join the exterior wires
to form a ring of length 2L. This simulates two semi-
infinite perfect leads if we set Ki ——1 and L && a. Thus
the electrons coming out of the central wire cannot come
back to it, the interactions being absent and the time to
go around the ring being too long. We can therefore de-
fine properly the reflection and transmission coefIicients
of an electron incident on the central wire. Creating an
electron amounts to introducing a kink of height vr in
4, and the problem of reflection and transmission then
reduces to a solution of the equations of motion for 4.
This leads us naturally to diagonalize the Hamiltonian
(2) with space-dependent u and K: we expand the field
4 in terms of a discrete set of boson creation and anni-
hilation operators and eigenfunctions.

We start with the case where u and K jump from
uq, Kq ——1 to u2, K2 at +a. We call t„ the time it takes
for an electron to go from y on the lead to the closest con-
tact, i.e. , uit„= IyI

—a, and t2 ——2a/u2 is the traversal
time of the central wire. 4' obeys simply a wave equation
with velocity ui outside and u2 inside. The propagating
solutions have to be joined at +a. The system of cou-
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pled equations of motion for O,8 require their continuity,
and so is ~8 O = Oi8. Indeed, a discontinuous C would
lead to an unphysical singularity: a charge accumulation,
thus a nonconservation of the current j = 8&4/vr, as can
be derived &om the continuity equation. Note that the
continuity of 4 and 0 guarantees that of the fermion
field. In the leads, the propagating solutions can be sim-
ply related to the original right- and left-going electrons'
density p~. In the interacting wire we instead define their
counterpart by

S+ = —,'(p + j/u).

8
0

0
CL

For the following, it is useful to write the time evolution
of their corresponding current j~(x) = +up~(x) (defined
for any x) as

0 0.5 1.5

J(x, t) = —M(x, y, t) J(y, 0),
dy

(4)
cot,/2z

where J = (j+, j ) and M is a 2 x 2 integral kernel
matrix that can be simply interpreted for a & ~x~, ~y~ &
L: M,„(x,y, t) (r, r' = +I) is the electronic charge
with velocity r uz reaching x at time t if an electron ini-
tially emanates at y with velocity rui [i.e. , if (p(x)) =
r (j(x)) /ui ——h(x —y) at t = 0]. M verifies time-reversal
symmetry: M (t) = M*„„,(—t) = M „„(—t); we
will henceforth restrict t to [O, tL,]. For points on oppo-
site leads verifying a & —y, x & (L —a)/2, all the entries
of M but M++ are zero: this expresses the fact that only
the direct path allows a particle to travel from y to x, the
other trips would take more than tl. . Therefore, there is
no ambiguity in identifying M++(x, y, t) with the charge
transmitted from y to x at time t. For points on the same
lead, e.g. , the left one, M+ ( L& y', y & ——a, t) = 0: a
left-going electron originating at y will travel counter-
clockwise and takes at least 4tl. tyI ty to generate a
right-going charge at y after its reHection on a. Besides,
M„„(y',y, t) = h [(y' —y) /ui —rt] (direct propagation)
while M +(y', y, t) can be identified with the reflected
charge appearing at (y, t) for an initial right-going elec-
tron at y.

Our simple model allows us to express all the M„,i (for
any x, y and for times less than tl, ) solely in terms of the
"descending Dirac comb" D(t) = Pp& ~ &,

p2"$(t-
2pt2), where p = (1 —K2)/(1 + K2) is the reflection
coefficient of an electron incident on the contact between
wires 1 and 2. A(t) is nothing but M++(x, x, t) for ~x~ &

a; it reveals the cyclic motion inside the finite wire. A
peak in (p+) initially localized at x C [

—a, a] reappears
at x after each time elapse 2t2, with its charge reduced
by p due to two successive reflections at the end points.

If an electron emanates initially at y & —a, the charge
transmitted to x & a at time t ( tI, is

M++(x, y, t) = (1 —q') a [t —(t. + t„+t, )] . (5)

The Grst Dirac peak, occurring at t0 ——t + ty + t2, ac-
counts for the Grst transmission to ~ of the partial charge
1 —p, after two reQections at —a, a on the way. Each

FIG. 1. The real part of the nonlocal conductivity through
the contacts versus the ratio of the external frequency to the
proper frequency of the wire 2s/t2 for ~p~

= 0.1 (solid line),
~7~ = 0.5 (dotted line), and ~p~

= 0.9 (dash-dotted line). If
Ki g 1, o' is multiplied by Ki andy is replaced bye'. Theres-
onances (antiresonances) at integer (half-integer) values cor-
respond to symmetric (antisymmetric) modes of the central
wire.

subsequent transmission at t = t0 + 2pt2 is reduced by
p ", i.e. , the incident electron is composed into a series
of noninteger charged maxima in the charge density. The
series sums up to unity in the limit tl. )) t2. the trans-
mission is perfect It would. be cumbersome to write out
M for other locations. Let us just add that the expres-
sion of M+ (y' & —a, y & —a, t) reveals a first reHection
with coefFicient p, while the subsequent ones are of oppo-
site sign and sum up to —p, leading to a vanishing total
reHection.

The nonlocal dynamic conductivity o (x, y, t) is given
by

o.(x, y, t) = gpK(y)0(t) ) M„„(x,y, t). (6)

o.(x, y, t) = gp M++ (x, y, t)

This is a generalization of the Landauer formula, Eq. (1),
to a dynamic situation in the sense that it relates trans-
port properties to transmission. To infer the &equency
dependence of the conductivity, caution is needed in the

To obtain this result one has only to realize that o (x, y, t)
yields exactly (j(x, t)) in response to an electric-field
pulse b(t)E applied at y. This Held generates in turn
an initial current peak at y so that (j(x, t)) develops in
accordance with the right-hand side of Eq. (6) [see Eqs.
(3) and (4)]. For points on opposite leads (x ) a, y & —a)
and t & tI„Eq. (6) reduces to
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order of limits: tI, is taken to infinity before b, the
adiabatic turn-on time of the dc electric field. We ne-
glect e ~ (( 1, thus preventing the electrons and holes
generated by the electric field to go all around. With
u = ~+ib, from Eq. (7) we find o for points on opposite
sides as

cr(x, y, ~) = gp exp i~(t + t„)
1 —7

X
exp( —iut2) —p exp(iVtq)

(8)

For points inside [
—a, a], all the entries of M contribute

and we obtain

Z(d (iver
0.(z, y, ~) = gpK2 exp —Iz —yl+ . , ) pexp

I
(*—y) I

u2 exp(-2z~t2) —p - ( u2 )
(i~

+exp
I

—[r(x+ y) —2a]
l

We can deduce 0'(—a, a, u) from both expressions (the
current being continuous at the junctions), and it is easier
to see from Eq. (8) that it reaches its maximum gp at each
eigenfrequency of the central wire u„= 2nm/t2 (this is
so if we keep t2 finite, while b' ~ 0). This is the resonant
absorption of an electric field by a finite system. The
usual Dirac peaks are broadened by the connection to
infinite leads as shown in the figure (see Fig. 1).

In summary, the finite wire behaves as a Fabry-Perot
resonator with the junctions playing the role of symmet-
ric mirrors. One can ask which results persist if we con-
sider the more general situation where u and K vary
inside the wire and can be asymmetric. We also al-
low for interactions in the leads with constant ui and
Ki. Following the previous steps, we can still show
that, for points on opposite leads, only the matrix ele-
ment M„„ is nonzero, r being the sign of the direct way
to go from one point to the other. Even if the leads
are interacting, we can continue to view M++(z, y, t) as
the transmitted charge at (x ) a, t) when a unit Hux
was incident at (y & —a, 0). This is because wherever

(p ) vanishes, (j) = ui(p) = ui(p+) so that a peak
in the total density propagates at velocity ui. Simi-
larly, the reQection is expressed through M +. Denoting
lim ~p E(z, y, ~+ib):—I" (x, y) where F is any function,
we get M++(z & a, y & —a) = 1 and M +(y', y) = 0. As
before, the total transmission through the central wire is
perfect, even if u, K are not symmetric on [

—a, a] . This
fact is not surprising; both j and u/Kp are uniform in
the steady state. But u/K is the same on the opposite
leads, and so is (p+(x, a = 0)). A partial transmission
can occur only if the leads are asymmetric.

We can also generalize the decomposition (6), which re-
lies merely on the deBnition of o and M and may also be
checked from their eigenfunction expansion. If y & —a,
one has only to replace K(y) by Ki instead of 1, so that
the identity (6) yields, for points on the leads, cr(z
a, y & —a, t) = gpKiM++(x, y, t) and o(y' & —a, y &
—a, t) = gpKi [h (t —ly' —yl /ui) + M + (y', y, t)]. In
the zero-frequency limit the transmission is perfect:
o (x, y) = o'(y', y)—:gpKi. This is also true if one or
both of z and y are in the central wire because 0'(x, y)
is independent on its arguments as we can check from
its mode expansion. Actually, this is a constraint to
be obeyed by any sensible transport theory for any one-
dimensional system exhibiting time-reversal symmetry.

I

We can verify explicitly this constraint in the special
model we solved (K = K2 on the central wire) by tak-
ing the limit u -+ 0 leaving t2 finite. Our results [Eqs.
(5) and (8)] concern Ki ——1, but we can rewrite them
for Ki g 1 provided the reHection coefficient p is re-
placed by p' = (Ki —K2)/(Ki + K2). We thus recover
cr(z, y) = gpKi for any x, y, even if these are on difFerent
wires.

I et us discuss the conductance one can measure. If
we impose a current through a nondissipative system, no
voltage drop is measured and the conductance would be
infinite. Conversely, we can connect it to perfect leads
intended to simulate reservoirs where dissipation takes
place and where the chemical potential is not affected by
the current through the sample. We define the conduc-
tance g of the central wire as the ratio of the current to
the potential drop between the junctions imposed by the
leads. The general relation of the current to the electric
Beld then shows that g is given by the uniform value of
cr(x, y) = g, where x, y can be inside or outside [

—a, a].
Therefore, g = gpKi is the conductance of the central
wire, irrespective of the form of its own parameters.

Returning to the initial model with abrupt variations
of u and K, it is quite instructive to take a difFerent
limit where t2 is of the same order as tI. . In particular,
t2 && 8 so that we can neglect e ' in the expressions
of O'. For instance, if z, y are in [

—a, a], Eq. (9) becomes
(after p m p')

o.(x, y, ~) = gpK2 exp[i~ lx —yl/u, ]

+ ) p' exp[in(t2 + r(x + y)/u2)]
r=k

We focus on three regions, corresponding to the neighbor-
hood of the origin (the "bulk" ), denoted by Ng (lzl « a),
and to that of each contact, denoted by N~ (lx + al && a).
The second exponentials are of order e ' in %g, thus o
regains its bulk form in a homogeneous inBnite wire. In
N~, o depends on both x and y, but the zero-frequency
limit is uniform on N~ o(x, y) = 2gp. /(Ki + K2 ).i5

If we can do a measurement that does not intro-
duce any additional scattering mechanism and restrict
an electric field to a segment in one of those neighbor-
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hoods, their respective conductances are gg ——goK2 and
g~ = 2go/(Kz + K2 ). g~ is the value of the bulk con-
ductance as derived in Ref. 5. g~ can be thought of as a
conductance of one junction: It is worth noting that g~
coincides with the transmission through +a, multiplied
by the ratio uq/u2.

In the same limit of large t2, the local correlation func-
tions for superconducting pairing decay asymptotically
in time as r " with Ks = I/K2 near the origin (as is
known for a homogeneous wire), while K~ = 2/(Kq +K2)
near the junction points. If Kq —— 1 and K2 & 1,
Kb & e~ ( 1: the pairing fluctuations in the central
wire extend to the external leads. This is the analogue
of a proximity effect for the situation where there are
only power-law pairing correlations but no long-range or-
der. On the other hand, an electron injected in one lead
and incident on the junction is reflected with coeKcient

(I —K2)/(I + A2) ( 0, i e , a p. a.rtial hole is re
flected back. We recognize the phenomenon of Andreev
reflection: When an electron is incident on a normal-
metal-superconductor interface, it needs to make a pair
with an electron &om the normal metal to enter the su-
perconductor. According to whether its energy is lower
or higher than the superconducting gap, an entire or par-
tial hole is reflected back. In the present case there is no

gap, so we only get a partial hole reflected. However, in
the limit K2 -+ oo, we get exactly one hole reflected.

To summarize, we have investigated transmission and
transport through a 6nite clean interacting wire perfectly
connected to semi-in6nite one-dimensional leads, all be-
ing treated on the same footing. The total transxnission
of an incident flux on the 6nite wire is perfect; this is re-
lated to the momentum-conserving interactions and the
symmetry of the external leads. Accordingly, the conduc-
tance one measures is just goK&, regardless of the internal
u, K. If u, K are also constant on the central wire, the
ac conductivity linking the end points shows a resonance
at the eigen&equencies of the 6nite wire. The multiple
reflections processes at the contacts, as in a Fabry-Perot
resonator, shed light on the perfect total transmission
and the departure of the conductance from its bulk value
goK2 to goK~. This is another manifestation of the fact
that the measured conductance is sensitive to the geom-
etry and may be governed by the scattering at the con-
tact probes. In real experiments, inhomogeneities at the
contacts are unavoidable and the device opens into wide
two-dimensional electrodes. The effects of this deserve
further study. Nevertheless, the experimental results2
obtained in quantum wires tend to con6rm the relevance
of the g = go result.
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