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Electrical discharges were measured during the propagation stage of electrical tree breakdown in an epoxy
resin. An analysis of their number sequence provides strong evidence for the existence of an underlying
deterministic chaotic mechanism. The fractal dimension of the tree and that of the reconstructed attractor and
Lyapunov exponent were found to be related. The higher fractal dimension tree (d,~1.9) is associated with an
attractor dimension d;~3.1 and Lyapunov exponent A~0.008 bit/s. The lower fractal dimension tree
(d,~1.5) is associated with values of d;~3.56 and A ~0.028 bit/s. No evidence for the presence of random
stochastic processes, an essential ingredient of the dielectric breakdown model, has been found.

Fractal breakdown structures in solids are called electrical
trees.! They are composed of gas-filled tubules of minimum
size ~10 um long, ~1 um radius. During propagation, the
gas breaks down in the electrical field, giving electrical dis-
charges which can be monitored. The discharges produce
damage around the tree periphery which eventually accumu-
lates to form new tubules which are added to the structure.
The structures generated are generally fractal objects and lie
in one of two classes: branch trees (1 <d,<2) and bush trees
(2<d,<3).'73 Here we focus on two models proposed for
tree propagation in polymeric solids omitting the possible
stochastic process of tree initiation.*

Two alternative models have been presented to exsplain
the formation of fractal tree structures. The first of these’ was
based on Niemeyer, Pietronero, and Wiesmann’s dielectric
breakdown model (DBM).% As in the DBM a tubular exten-
sion is made by a random stochastic selection from a field-
weighted distribution of peripheral directions, but now, no
extension is allowed below a threshold field level. In this
model the damage either forms a tubule immediately or it
does not occur. In contrast, it has been proposed’ that dis-
charges produce quantifiable subtubule forming damage via
avalanches, which is accumulated until it reaches the critical
level for tubule formation. Fractal breakdown structures are
only produced when mechanism-induced time-de];endent
fluctuations in the local electric field are introduced.’ In the
absence of these fluctuations, single puncture structures are
obtained which exhibited a rapidly accelerating (runaway)
propagation rate.

The fundamental difference between the DBM approach
and that of Dissado and Sweeney’ is in the origin of the
fluctuations that produce the fractal structure. In the DBM
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the fluctuations are stochastic in origin, whereas in the
discharge-avalanche model’ they are driven by the mecha-
nism itself. In this latter case it was suggested”® that the local
field was modified by the space charge produced as a result
of the tube discharges and the avalanche damage process.
Both enhancement and reduction of the Laplace field of the
discharge could occur, dependent upon the polarity and spa-
tial distribution of the charges. In particular, the charge re-
distribution during the avalanche damage process will reduce
the local field along the avalanche path until the applied field
reverses polarity in its ac cycle, when it enhances it. The
damage-generating process, which is strongly nonlinear in
local field, is therefore a source for both negative and posi-
tive feedback effects via modifications to the local field that
are self-produced. Such a process fulfills the requirements
for the existence of a regime of deterministic chaos,’ in
which the local field would be driven to follow a never-
repeating sequence of values as the tree propagates. In this
case the sequence trajectory adopted by the local field will
lie on the surface of a strange attractor.” The DBM, in con-
trast, implies that the local field will suffer only random fluc-
tuations about a deterministic value. It is therefore possible
to distinguish between the two explanations for the tree
structures by monitoring the local electric field, or a related
feature, during tree growth. This is our intention here.

First, we point out that systems of equations that are ca-
pable of exhibiting deterministic chaos have a parameter
range in which the system either reaches equilibrium or runs
away to infinity. In dielectric breakdown, we would expect a
runaway breakdown to occur at high applied fields (when
positive feedback dominates) and equilibrium to occur at low
fields (when negative feedback dominates).!'® Deterministic
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FIG. 1. The length-time plots of breakdown structures grown
from a needle electrode in the same epoxy resin at different applied
voltages.

chaos would only occur in an intermediate range where the
positive and negative feedback processes are near balance. If
fractal trees are a consequence of deterministic chaos in the
damage-driving local electric field, we would therefore ex-
pect them to lie between a runaway at sufficiently high ap-
plied field (voltage), and a nondamaging equilibrium at low
field. The experimental results presented in Fig. 1, for Ciba
CT1200 epoxy resin, show that this is indeed the case, with
the crossover between decelerating tree propagation and ac-
celerating runaway breakdown occurring very sharply at an
applied voltage of 16 kV. Repeat experiments using Ciba
CT200 epoxy resin show the same systematic behavior with
applied voltage but with a crossover to runaway at a voltage
of 14.5 kV.!! We note also that the runaway result obtained in
the discharge avalanche model’ in the absence of field fluc-
tuations is consistent with an interpretation of the fluctua-
tions as due to deterministic chaos. In the DBM, however, it
is not possible to determine the rate of propagation, and a
crossover such as that observed experimentally can only be
obtained by an abrupt change of a field-weighting parameter
7 to a high value® above a critical voltage.

Since it is not possible to measure the local field directly
during tree propagation, it is necessary to monitor an observ-
able feature that is field dependent. Electrical discharges are
the most obvious of such features. Their magnitude and num-
ber will depend upon the fields produced in the tubules by
the surrounding space charges and applied voltage.'? In our
case we have chosen to monitor the number of discharges,
with magnitude greater than 1.3 pC, over a 1-s interval every
2 s during the propagation of the tree. Pin-plane electrode
geometry samples (to model a standard defect) were made by
embedding tungsten pins of shank diameter 1 mm and pin-tip
radii of 3 um, into Ciba CY1311 epoxy resin slabs. Tree
growth in this material was found to be reproducible and
predictable over a range of applied voltage."> The fractal
dimension, d,, of the trees grown was varied from ~1.4 to
~1.9 by increasing the ac voltage applied to the pin elec-
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FIG. 2. Plot of the correlation dimension over a range of em-
bedding dimensions for (a) sample A and (b) sample B.

trode or reducing the pin-plane separation. The experiments
were repeated a number of times. The discharge pattern for
trees of a given fractal dimension was reproducible and
changed systematically with the applied voltage and pin-
plane spacing as described in Ref. 14. The time sequence of
discharge numbers was analyzed and described here for two
samples: sample A, a lightly branched tree, d,=1.5, and
sample B, a highly branched tree, d,=1.9, produced by a
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FIG. 3. The running average Lyapunov exponent as the analysis
steps through the time series. (a) Sample A, for an embedding di-
mension of 8. The evolution time, ¢, , ranges from four to eight data
points in the time series and the lag time, A, between components
of the pseudovectors, from four to ten. (b) Sample B, embedding
dimension =8, and values of 7, between four and eight and A
between four and eight data points.
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FIG. 4. Singular value spectra for samples A and B. Seven
deterministic components are seen to be emerging from the noise
floor for both samples.

similar field but higher voltage. To determine whether the
discharge activity was governed by a deterministic chaotic or
stochastic process, we have applied the technique of Grass-
berger and Procaccial® to obtain the correlation dimension,
dy, and the algorithm of Wolf ez al.'% to determine the domi-
nant (most positive) Lyapunov exponent, \. Estimates of
d; for the two samples are shown in Fig. 2, where they are
plotted as a function of the embedding dimension of the
pseudovector construction.’® The correlation dimension was
found to saturate to values 3.56*0.10 for sample A, and
3.10%+0.05 for sample B, for embedding dimensions greater
than 7. If the discharge behavior was the result of a stochas-
tic process, then the estimated correlation dimension should
be equal to the embedding dimension'® and follow the diag-
onal line in Fig. 2. Dominant Lyapunov exponent analysis
was repeated for different embedding dimensions from 2 to 9
and a range of values for the analysis parameters.'® Conver-
gence occurred for embedding dimensions greater than 7
when the evolution time step, ¢,, and lag time between
pseudovector components, A, were both greater than four
data points in the time sequence. In Fig. 3, the running av-
erage dominant Lyapunov exponent for the two samples is
plotted as the analysis steps through the time sequence for an
embedding dimension of 8 and various values of the analysis
parameters ¢, and A. The dominant Lyapunov exponents
were A=+0.028+0.006 bit/s for sample A and
A= +0.008+0.002 bit/s for sample B. The positive value of
N\ obtained for the two samples implies chaotic behavior.
Finally, we have used the singular system analysis technique
described by Broomhead and King!” to separate the deter-
ministic and stochastic elements of a time sequence of data
and to reconstruct the attractor. This also allows us to obtain
statistical dimension estimates as defined by Vautard and
Ghil'® for the two time series. The singular spectra for the
two samples are shown in Fig. 4, giving a statistical
dimension'® of ~7 for the two samples. Diagrams of three-
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FIG. 5. Three-dimensional representations of the attractors for
(a) sample A and (b) sample B, where the time series for the two
samples were transformed onto their three most significant deter-
ministic directions.

dimensional representations of the attractors for the two
samples are shown in Fig. 5, where the trajectories were
transformed onto the three most significant deterministic di-
rections. The more complex trajectory for sample A is con-
sistent with its higher correlation dimension and larger domi-
nant Lyapunov exponent. Saturation of N and d; for
embedding dimensions greater than 7 agrees with the statis-
tical dimension estimates, suggesting that a model with at
least seven degrees of freedom will be required to describe
the discharge behavior.'®

The reproducibility of these and other results for trees of
intermediate fractal dimensions confirm the following facts:
(i) a strange attractor governs the equations describing the
propagation of fractal breakdown structures in CY1311 ep-
oxy resin; (ii) the dimension of the attractor decreases from
3.56 to 3.10 and dominant Lyapunov exponent from
+0.028 bit/s to +0.008 bit/s when the fractal dimension of
the tree increases from 1.4 to 1.9; (iii) there is no evidence
for a random stochastic process in the discharge behavior
during tree propagation. The dominant Lyapunov exponent
and correlation dimension estimates for the two trees imply
that the chaotic aspects of the breakdown process reduced as
the applied voltage and tree dimension d, increased. It must
be concluded that fractal breakdown structures in CY1311
and possibly other epoxy resins are the consequence of a
deterministic breakdown mechanism operating in a param-
eter region which leads to deterministic chaos, rather than
due to stochastic processes. This conclusion supports the
discharge-avalanche model’ over the DBM (Ref. 5) in poly-
meric breakdown, with the mechanism-induced field fluctua-
tions of the former being seen to play the role of determin-
istic chaos in the local field magnitudes. Increases in d, at
high voltages correspond to a trend towards a deterministic
mechanism, i.e., an enhancement of the positive feedback
processes, which eventually results in runaway behavior
when the voltage is high enough.
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