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Ground-state properties of the one-dimensional Kondo lattice at partial band filling
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We compute the magnetic structure factor, the singlet correlation function, and the momentum distribution of
the one-dimensional Kondo lattice model at the density p=0.7. The density-matrix —renormalization-group
method is used. We show that in the weak-coupling regime, the ground state is paramagnetic. We argue that a
Luttinger-liquid description of the model in this region is consistent with our calculations. In the strong-
coupling regime, the ground state becomes ferromagnetic. The conduction electrons show a spinless-fermion-
like behavior.
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The heavy-fermion materials display a variety of low-
temperature states. ' In some compounds, the Fermi-liquid
state with huge quasiparticle mass is stable down to the low-
est attainable temperatures. In others, the Fermi liquid be-
comes magnetic or superconducting or both. The magnetic
structures vary from simple Neel antiferromagnetism
through incommensurate order to ferromagnetism. This rich
phenomenology arises from the interplay between a wide
conduction-electron d band and a partially filled narrow f
band of rare-earth actinide or lanthanide elements. One of the
canonical models for the description of these systems is the
Kondo lattice model (KLM).

After almost two decades of intense studies, the KLM is
far from being completely understood. Even for the simplest
case of one dimension, a consensus is reached only for the
half-filled case. The model is an insulator. A spin gap and a
charge gap open for all nonzero values of the Kondo cou-
pling. In the metallic phase, Monte Carlo" and exact
diagonalization calculations have found that the KLM pre-
sents two phases. A paramagnetic (PM) state with
Ruderman-Kittel-Kasaya- Yosida (RKKY) correlations is
stable at low values of the Kondo coupling. The PM state
evolves to a ferromagnetic (FM) ground state when the cou-
pling becomes greater than a critical value. This FM phase is
found to be numerically in accord with the results of strong-
coupling expansion. At very low densities, the model has a
FM phase at all nonzero couplings. The Monte Carlo study
was, however, performed at finite temperature while the ex-
act diagonalization one was restricted to a lattice of eight
sites. Therefore, the trends displayed in these computations
remain to be confirmed in the ground state of much longer
chains. Using standard notations the KLM may be written as
follows:

the letters c and f standing for conduction and localized
electrons, respectively. We applied the density-matrix-
renormaliz ation-group (DMRG) technique to this one-
dimensional (1D) Kondo lattice. We chose a density
p=0.7, typical of those found in 3D compounds. We believe
that the properties displayed at this density will reAect the
behavior of the model in the whole region of moderate dop-
ing. Although the physical range of Jz corresponds to small
couplings, it is also interesting to study the strong-coupling
regime in order to understand the behavior of the model in
the whole range of parameters. We varied Jz from 0.25 to
10. In the DMRG, an iteration of the algorithm consists in
adding two sites at each step. It can be immediately realized
that there is a problem in keeping the electron density fixed
during the iteration process. To get around such a problem,
we constructed the reduced density matrix from the two
states whose electron numbers bracket the desired density. In
the DMRG method, the states are also labeled by the z com-
ponent of the total spin. In the present study, we work in the
subspaces having ST=0 and ~-,' . For more details, the
reader is referred to a recent paper by Chen and one of us, '

where the method has been successfully checked for the one-
dimensional t-J model. The maximum lattice size we have
reached is 75 with up to 180 states kept in the two external
blocks. The truncation error of the Hilbert space at each it-
eration is around 7.10 at Jz=0.5 and less than 10 at
Jz = 10. We have computed the binding energy, the magnetic
structure factor, the on-site conduction-electron-localized
spin correlation and the electron momentum distribution.
Our results confirm the conclusions of Monte Carlo and
exact diagonalization studies. A paramagnetic state is stable
in the small coupling regime. This state is characterized by a
maximum in magnetic structure factor at 2kF = up and a

C

singularity in the electron momentum distribution function at
kF . In the strong-coupling regime, the ground state is FM.

C

The singularity of the conduction-electron momentum distri-
bution is shifted to 2kF .

C

When calculating the ground-state energy, we have taken
the average of the lowest states having p& and p2 such that
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FIG. 1. The binding energy of the Kondo lattice Fs (circles)
versus the Kondo coupling. The dashed line corresponds to the

strong-coupling limit. In the inset Fz is compared with the binding

energy of the one-impurity (diamonds) Kondo problem.

p&~ p~ pz (see Ref. 9). This way, the ground-state energy
per site of the noninteracting system can be reproduced up to
four digits. In the Jz= ~ case, the N, conduction electrons
form perfect on-site spin-singlets with the localized spins.
The other N N, f spins—remain free. The system presents a
2 ~ fold spin degeneracy. When the coupling is strong
but finite, the ground-state energy per site is very close to
—

4Jzp. The binding energy is defined as
Es=[EG(Jz=O,N) EG(J+,N)—]/IN, where EG(Jtr, N) is
the ground-state energy. At a given density p, Ez per site
will be very close to E = 4pJz+ eo. The quantity

en = —4/m sin[(m/2) p] is the energy per site of the noninter-
acting case. In Fig. 1, we show that our results are consistent
with such an analysis. The convergence to E is very
smooth. However, Fig. 1 also indicates that this picture
breaks down around Jz = 2. Below this value of the coupling,
the system enters in the small coupling regime characterized
by pFJ+~1, pF being the density of state at the Fermi level
of the noninteracting Hamiltonian. For the one-impurity
Kondo problem, the binding energy is given by
E, =3t(pFJtr) Ln(2t)+4t exp —(I/pFJtr). ' The nonana-
lytic part of Ei defines the Kondo temperature Tz. In the
inset of Fig. 1, we have compared Ez with E&. One can see
that Ez is greater than Ei. This enhancement of the binding
energy of the lattice over the one-impurity case results from
the intersite magnetic interaction. However, the latter conclu-
sion does not necessarily mean that the Kondo temperature
of the lattice is greater than T&.

The magnetic properties of the KLM are studied by cal-
culating the spin structure factors of the conduction elec-
trons, S,(k) and of localized spins, S&(k). These quantities
are defined here as follows:
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FIG. 2. The magnetic structure factor of the localized spins for
p=0.7 at Js=0.5 (circles), Jtr= I (diamonds), 1+=2 (stars), and

Js = 4 (triangles).
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that of ST. We have not taken the average as for the ground-
state energy because when the lowest state corresponding to

pi has S'„=0, that of pz is ST= ~ —,', and vice versa. 'We have

used only the state with ST=0. In order to reduce the effects
due to the variation of the density during the iterations, we
have started the calculation of the correlation functions at
different lattice size around 35 and then taken the average. In
agreement with previous studies, we have found that the
structure factor shows the competition of PM and FM
phases. For small Jt, , both S&(k) (Fig. 2) and S,(k) (Fig. 3)
have a maximum at 2kF . The strong spin correlation ob-

C

served in S&(k) is due to the RKKY interaction. As the cou-
pling is increased, this maximum fIattens out. It completely
disappears around Jz=2. We note that this result compares
well with that of exact diagonalization and Monte Carlo

1
S f(k) p (SI f' S f)e p[xi(l —m)k].

N t, m

At the first steps of the algorithm, pi and pz are significantly
different from p and boundary effects are non-negligible.
Thus, we started the calculation of the correlation functions
when the lattice size was around 35. We have noticed that the
value of the correlation functions are extremely sensitive to

0.0
0.0

I

0.2
I

0.4
I

0.6
l

O.S 1.0

FIG. 3. The magnetic structure factor of the conduction elec-
trons for p=0.7 at JR=0.5 (circles), Js= 1 (diamonds), JR=2
(stars), and Js=4 (triangles).
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FIG. 4. The on-site conduction-electron-localized spin correla-
tion versus the Kondo coupling. The dashed line corresponds to the
strong-coupling limit.

FIG. 5. The electron momentum distribution n(k) for p= 0.7 at
Js.=0.5 (circles), Jx= l (diamonds), Jx=2 (stars), and Jx=4 (tri-
angles).

studies. When Jz is greater than this value, a new maximum
arises at k=0. It has been shown that in the strong-coupling
regime, the effective interaction between the f spins is
ferromagnetic. The maximum at k=0 of S,(k) can be seen
as a consequence of small ferromagnetic correlations track-
ing those of the f spins.

The suppression of the RKKY correlations can be under-
stood by the Kondo mechanism. When Jz is small, the on-
site singlet correlation (S;, S; &) shown in Fig. 4, is different
from that of perfect on-site singlets —4p. This is due to the
nonlocal character of the Kondo singlets. This means that the
singlet formed by an impurity and the conduction electrons
has a spatial extension. Consequently, the RKKY interaction
between impurities is favored. As the coupling is increased,
the size of the singlet reduces. It rapidly approaches that of
perfect on-site singlets. As a result, the RKKY mechanism is
suppressed. However contrary to the conventional view of
the KLM, ' a global singlet state is unstable against a FM
state in the strong Jz limit. In this limit, the local Kondo
singlets are mobile. It is the underlying electron motion in
reduced dimension that is responsible of the FM correlations.

Now, we turn to the discussion of the conduction electron
momentum distribution n(k). It has been argued that in the
weak-coupling regime, the KLM may present a PM Lut-
tinger liquid (LL) structure. The LL behavior is characteris-
tic of many one-dimensional interacting electron systems. "
In the LL theory of PM systems, S(k) has a maximum at
2kF and n(k) presents a singularity at kF . The electron

C C

momentum distribution has the form that follows:

n(k) = n& C~k —
kF~ sgn—(k —kF).

We cannot calculate accurately the value of the exponent
u. But Fig. 5 clearly shows that the singularity is located at
k=kF in the weak-coupling regime. The existence of this

C

singularity is consistent with the presence of the maximum
of S, f(k). So, the description of the model in the weak-
coupling regime in terms of LL is plausible. Further investi-

gations of the excitation spectrum are necessary to get the
full answer. At intermediate Jx, n(k) is found to be very
smooth so that it becomes hard to identify any singularity. At
strong Jz however, the singularity now appears at k=2kF

C

as in a spinless fermion system. We believe that this is due to
the action of the Kondo coupling which suppress a double
occupancy of the conduction electrons. It freezes the
electron-spin degrees of freedom. The transition from a PM
to a FM phase does not necessary mean that the LL descrip-
tion breaks down. It can be yet interpreted as a transition
from a PM LL to a ferromagnetic LL.

Finally, we touch upon the question of the size of the
Fermi surface in the PM phase. In the weak-coupling region,
the KLM is an effective model of the periodic Anderson
model (PAM). In the PAM the f electrons are mixed to the
conduction electron through a hybridization term. The PAM
is believed to have a large Fermi surface containing both
conduction electrons and localized electrons. In the KLM,
however, there is no hybridization between the two kind of
particles. It is still a matter of debate whether or not the
KLM has a large Fermi surface. A large Fermi surface sup-
poses the existence of a maximum at 2kF + m in the struc-

C

ture factor or of a singularity in the momentum distribution
function at kF + m/2. Our results do not show any significant

C

feature at this wave number. There is yet the possibility that
the singularity at the position of the large Fermi surface is
very small. '

In conclusion, we have used the DMRG to study the
KLM at the density p=0.7. We believe that the behavior of
the model at this density is characteristic of the moderate
doping region. In agreement with previous exact diagonal-
ization and Monte Carlo calculations, we have shown that
the model presents a transition around Jz=2. The weak-
coupling region is PM. The magnetic structure factor has a
maximum at 2kF . The electron momentum distribution

C

function displays a singularity at kF . We have argued that
C
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this is consistent with the description of the model in terms
of LL. The strong-coupling region is FM. In this phase, the
singularity in the electron momentum distribution is shifted
to 2kF . This can be interpreted as the presence of a ferro-

C

magnetic LL structure.
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