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Numerical simulation of vortex arrays in thin superconducting films
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Numerical simulations of the evolution of the order parameter and the vector potential in thin type-II
superconducting films are reported. The theoretical framework is provided by the well-known time-dependent
Ginzburg-Landau (TDGL) equations coupled with the Maxwell equations. The external field is applied parallel
to the surfaces. Several maxima appear in the magnetization curve, a phenomenon that has been observed in

experiments and up to now only explained using a London approach. It is proved that these maxima are indeed
predicted by the fu11 TDGL approach, and are not necessarily linked with structural changes in the vortex
lattice. A mechanism for the appearance of magnetization maxima in finite samples is identified, based on the
behavior of surface supercurrents.

The magnetization of a thin superconducting film as a
function of the applied field parallel to its faces is consid-
ered. In the last few years this process has attracted
attention, ' mainly focused on the oscillations exhibited by
the magnetization. Some models, based on a London-type
approach, have been able to explain why magnetization
peaks appear at certain fields. ' Though the experiments
were carried out in layered superconductors and in oriented
YBaCuO films, the models make no use of the internal pe-
riodic structure of the sample and nevertheless arrive at sat-
isfactory predictions. It is thus interesting to analyze this
problem using a fully coupled Ginzburg-Landau approach,
by numerically solving the time-dependent Ginzburg-Landau
(TDGL) equations coupled with the Maxwell equations in a
homogeneous, isotropic, type-II superconducting thin film.
Numerical simulations using the same approach have already
proved useful in the modeling of other superconductivity
phenomena.

Our results can be sunitnarized as the following: (i) It is
confirmed that the full TDGL approach predicts a series of
maxima in the magnetization of a homogeneous type-II film
with the applied field parallel to its faces. (ii)It is proved that
these maxima are not necessarily linked with structural
changes in the vortex lattice. (iii) A mechanism for the ap-
pearance of such maxima is identified, strongly linked with
the behavior of surface supercurrents. This mechanism is in-
dependent of that proposed in Refs. 1 and 2.

Let us brieAy describe the mathematical model and the
numerical method. We use the time-dependent Ginzburg-
Landau (TDGL) equations coupled with Maxwell equations,
leading to the following mathematical problem for the order
parameter P and the vector potential A (the scalar potential
is eliminated through an appropriate choice of gauge):

BA
=(1—T)Re[&/i*( —iV —A)p] —~2Vx VxA. (2)

Bt

Lengths have been scaled in units of $(0), time in units of
to= mfa/(96k~T, ), A in units of H, z(0)g(0) and tempera-

tures in units of T, . It has been assumed that ((T)
= $(0)(1—T/T, ) ', where T is the temperature and T, the.
critical temperature, and that the Ginzburg-Landau parameter
~ is independent of temperature. In (1), r/ is proportional to
the ratio of characteristic times for l('I and A . f is a random
force simulating thermal fluctuations, selected at each mesh
point from a Gaussian distribution with zero mean and stan-

dard deviation o.= g(m

Eclat/6)(T/T,

) where b t is the time
step, as done in Ref. 6. Re stands for "real part of."

Equations (1) and (2) are complemented with initial con-
ditions, together with the condition

(-iV —A)(P =0,

where n denotes the normal to the superconductor-vacuum
interface; and boundary conditions for A, namely that

B,= V xAl, at the external surfaces must equal H, , the ap-
plied field. The sample is assumed to be infinite in the z
direction, and the problem is reduced to two dimensions ne-
glecting all derivatives along z. The magnetization M, is
defined as (see, e.g. , Ref. 8)

f[B,(x,y) H, ]dx dy-
47rfdx dy

The numerical method is the same as that used in Refs.
4—7. The order parameter is defined at the nodes of a rect-
angular mesh, while at the links of the mesh the link variable
U =exp[ ifA~dp] is used—, with p, =x or p, =y depending
on the direction of the link.

The computational domain is a two-dimensional layer of
thickness d = 12((0) and length L = 80$(0), aligned with the
x axis (see insert in Fig. 1). The rectangular domain

(—40$(0),40((0)) X ( —6$(0),6((0)) is divided into square
cells with edge h = 0.5((0), resulting in a 160X24 mesh. At
the boundaries y = ~6$(0) the y component of the current
density is set to zero. Periodic conditions are imposed at
x = ~ 40$(0) to approximate an infinitely long film. The ex-
ternal field H, is applied along the z direction. H, is in-

creased linearly with time from 0 to 1, that is H, (t) =H, r .
H, is given the value 1.333' 10 in the dimensionless units
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FIG. l. (a) Magnetization curve obtained for a film of thickness

d = 12((0). Points (a) to (k) correspond to the contour plots of Fig.
2. (b) Number N of fluxoid quanta in the computational domain.

The cloud of points for 8,-0.9 and above indicates that the sample
has become normal. In the definition of N (inset), J, is the super-

current density and the integration path coincides with the border of
the computational domain.

introduced above. This value corresponds to a slow variation
of the applied field, compared to the characteristic times of
the system. The time step is At=0.015, T=0.5, a=2, and
zj= 1. With these definitions H, i(T) = 0.04 and

H, 2(T) = 0.5 for the bulk material, while H, 3(T) = 0.85 for a
semi-infinite domain. Five million time steps are required to
simulate the process. Variables are homogeneously initial-
ized to a perfect Meissner state, P(t=O)=1, A(t=O) =0
(for every point in the domain), implying
U„(t= 0) = U, , (t =0) = 1 and B,(t = 0) = 0. Fo is given the

value 10, as in Ref. 6.
The resulting magnetization curve exhibits a series of

maxima, as shown in Fig. 1(a) [notice that the vertical axis in

Fig. 1(a) represents —4izM, , so the maxima correspond to
points of maximal expulsion of the external field]. The first
three maxima are at H, =0.205, 0.278, 0.335. After each
maximum, the curve turns downwards and remains smooth.
After a significant decrease in —4mM, from the maximum
value a sudden entrance of magnetic Aux into the sample
takes place, at H, =0.229, 0.303, 0.365. These discontinui-
ties in the magnetization correspond to vortices penetrating
into the sample. The number N of vortices as a function of
H, is shown in Fig. 1(b).

Contour lines of the magnitude of the order parameter

FIG. 2. Contour plots of the magnitude of the order parameter at
several stages of the simulation. The corresponding applied fields

are H, =0.2 (a), 0.228 (b), 0.232 (c), 0.278 (d), 0.301 (e), 0.305 (f),
0.335 (g), 0.364 (h), 0.37 (i), 0.463 (j) and 0.703 (k). The contour
interval is 0.1. The presence of vortices is evidenced by local
minima of IP. In (a) and (b) a Meissner state holds, so that ItII is
maximum along the central line. (k) corresponds to surface super-

conductivity, with IP taking its maximum value at the surfaces.

I PI are shown in Fig. 2, for H, =0.205 (a), 0.228 (b), 0.232
(c), 0.278 (d), 0.301 (e), 0.305 (f), 0.335 (g), 0.364 (h), 0.370
(i), 0.463 (j), and 0.703 (k). The corresponding points in the
magnetization curve are indicated in Fig. 1(a). For
8,~0.228 no vortices have entered the sample. The order
parameter is depressed at the boundary allowing the mag-
netic flux to penetrate a depth of order X.(T) . Twelve vorti-
ces enter at 8,=0.229, and arrange themselves in an equis-
paced linear chain. This regular structure can be observed in

Figs. 2(d) and 2(e). In Fig. 2(c) (H, =0.232), the vortices
have not yet reached the steady configuration. The number N
remains equal to 12 until a new vortex penetration event at
H, = 0.303. The structure in Fig. 2(f) (H, =0.305) is an un-

steady configuration of the vortex lattice, a snapshot of the
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system in its way to equilibrium. This intermediate configu-
ration exhibits the quasicoalescence of vortex pairs. A steady
configuration of the 22 vortices at H, =0.335 is shown in
Fig. 2(g). At this field, it is energetically convenient for the
vortex lattice to "corrugate. "This should not be interpreted
as a transition to a two-dimensional structure . When the
external field is further increased, it compresses the vortex
lattice and, at H, =0.364 [Fig. 2(h)] a linear chain is again
found. The possibility of two maxima in the magnetization
curve sharing the same vortex structure is thus proved. After
the third vortex-entrance event at H, =0.365, N=29 is too
large for a single chain, and two chains appear [Fig. 2(i)].'

Though several small maxima can be observed in Fig. 1(a)
for fields higher than 0.37, the number of vortex chains re-
mains equal to two up to H, 2(T) =0.5. These chains become
more and more dense as new vortices enter the sample [see
Fig. 2(j)], until the order parameter in the central region be-
comes essentially zero at H, =H, 2(T) and superconductivity
persists only at the surfaces [Fig. 2(k)].

We now propose an alternate mechanism for the phenom-
enon we have just described. Let us recall the magnetization
curve of a superconducting ring, for the case when the thick-
ness of the wire satisfies a&& ((T). If an external field H, is
applied perpendicular to the plane of the ring, a current of
density J develops so as to keep fixed the number N of
Auxoid quanta trapped. The magnetization of this system has
been analyzed in Ref. 11.Denoting by P the perimeter, by A
the planar area enclosed, by S the cross-sectional area of the
ring, by Pti the fiuxoid quantum, and by A the self-
inductance, measuring J in units of cga/[8 m v g(T) ] and
the magnetization —4 m M in units of POPI [2m A $(T)], we
arrive at"

—4aM =PJ(P, P, ),

where P, is a nondimensional measure of the applied flux,
namely, P, = (AH, I Pu N)/[PI(2m/(T—)] and P= SA/
[2P tr g(T) ].The magnetization is proportional to J, which

takes the maximum value J,=2/~27, independent of p. In
Fig. 3 we plot J vs p, for p=O, 0.2, and 0.4. Though only
qualitative, the similarity of these curves with each piece of
the magnetization of Fig. 1(a) between two vortex penetra-
tion events is suggestive. It should be added that all expres-
sions above are valid for a planar superconducting loop of
any shape, provided the correct value of the self-inductance
A is used.

As in the case of the loop just discussed, in a finite sample
there is a portion of the applied fiux that penetrates (in the
form of vortices), and a surface current that balances the
difference between the average internal field and the applied
field. The number of vortices inside a finite sample plays the
role of a mesoscopic quantum number (similar to N in the
previous paragraph). If the sample contains N vortices, their
contribution to the total fiux is Ngn, a constant. The shape
of the magnetization curve between two vortex-penetration
events is thus governed by the surface current, which forms a
loop around the vortex array. It is thus natural that, for a
finite sample, the magnetization curve is divided into several
smooth pieces, each piece corresponding to some number N
of vortices inside the sample, and that each smooth piece
resembles the magnetization curve of a loop (Fig. 3). The
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FIG. 3. Current density in a superconducting ring, as a function
of the dimensionless measure of the applied fiux P, (see text).
Shown are typical plots of J/J, (specifically, the curves correspond
to P= 0,0.2, and 0.4). The magnetization of the ring is proportional
to the current density.

previous argument applies as well to an infinite thin film,
provided that its behavior can be shown to be equivalent to
that of a finite film (of length L large enough) with periodic
boundary conditions. The approximation of infinite domains

by finite ones with periodicity assumptions is usual. More-
over, we have checked that our results are independent of the
particular choice of L [whenever L)40((0)]. This implies
that an infinite film can be approximated by a finite (peri-
odic) one, which in turn is in the sense described above
analogous to a superconducting loop.

In Fig. 1(a), the first maximum corresponds to the Meiss-
ner state (N=O), the second to N= 12, the third to N=22,
and so on. The analogy with the loop also explains the mag-
netization maxima at fields H, )H, 2(T), for which no vor-
tices exist and thus no explanation based on the vortex-lattice
structure (such as that of Refs. land 2) applies. The argument

suggests that oscillations in the magnetization can occur for
any finite sample. The effects are of course only measurable
when the surface-to-volume ratio is large enough. '

The analogy to the superconducting loop can be carried
further to explain the sudden entrance of vortices at some
specific values of H, . As recently proved by Horane et al. ,

'

the analytical solutions obtained in Ref. 11 become unstable
at some value of the difference AH, N@o. This inst—ability
takes the loop to a state in which IP(x)I is not uniform
around the loop. Moreover, as a result of this instability phe-
nomenon there appear points where

I P(x) I

= 0. Conse-
quently, the loop "opens" and additional Aux quanta are al-
lowed in, just as is observed in Fig. 1(b). By analogy, we
propose that the distribution of currents surrounding the vor-
tices becomes unstable at some value of AH, Ngo, and-
that this instability induces the observed spontaneous appear-
ance of points at the sample surface with

I P(x)I =0 where
new vortices nucleate. The number of vortices entering the
sample at each instability event can in principle only be pre-
dicted by time-dependent simulations as the ones reported
here.
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The computations presented here are part of a series of
computations which will be reported in a future paper. It has
been checked that all results from which we draw conclu-
sions are generic, and do not depend on purely numerical
parameters such as h, At, L, Fo, or H, within reasonable
ranges of variation. Also, changes in ~, T, or y modify the
results only quantitatively, but not in their essential features.

We believe the mechanism proposed to explain magneti-
zation maxima, is an alternate mechanism to that proposed
earlier by Guimpel et al. The difference is that theirs ne-
glects the fact that the vortices must overcome the surface
barrier to enter the sample, ' while ours is based on the
destabilization of this barrier when the difference between
the applied Aux and the number of trapped Aux quanta is
large enough. This is the important part of our argument and

leads to the prediction of oscillations in the magnetization
curve. The approximation of the surface supercurrents by a
one-dimensional loop is introduced for clarity but is not es-
sential and only qualitatively valid. Which mechanism ap-
plies to a specific situation will depend on the role played by
defects in the sample surface. Simulations accounting for
defects will be carried out in the near future. We should
remark that the relation (if any) between the internal vortex
structures and the magnetization maxima can be experimen-
tally determined by carrying out magnetization measure-
ments together with neutron-scattering experiments.

Our thanks to J. Castro, L. Civale, F. de la Cruz, J.
Guimpel, E. Horane, and R. Trinchero for fruitful discus-
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