
PHYSICAL REVIEW B VOLUME 52, NUMBER 22 1 DECEMBER 1995-II

Spin-wave excitation spectra and spectral weights in square lattice antiferromagnets
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Using a recently developed method for calculating series expansions of the excitation spectra of quantum

lattice models, we obtain the spin-wave spectra for square lattice, S=1/2 Heisenberg-Ising antiferromagnets.
The calculated spin-wave spectrum for the Heisenberg model is close to but noticeably different from a
uniformly renormalized classical (large-S) spectrum with the renormalization for the spin-wave velocity of
approximately 1.18. The relative weights of the single-magnon and multiple-magnon contributions to neutron-

scattering spectra are obtained for wave vectors throughout the Brillouin zone.

Thermodynamic properties and excitation spectra of two-
dimensional quantum antiferromagnets have attracted much
attention, especially because of their potential relevance to
high-temperature superconductivity in the cuprate
perovskites. ' Methods based on high-order series expansions
about the Ising model have proven to be very successful in
accurate calculations of the thermodynamic properties of
two-dimensional antiferromagnets. ' One major limitation of
these methods has been their inability to deal directly with
dynamical properties or excitation spectra. These quantities
have so far been studied, within the series approach, via fre-
quency moments and single mode approximations. The re-
liability of using only a few moments to reproduce spectral
line shapes has come into question, for example, in the case
of the two-magnon Raman spectra. Currently efforts are un-6

derway to use a large number of frequency moments to ob-
tain the dynamical properties by numerical analytical
continuation.

Recently one of us has shown that a series expansion
method can be used to directly calculate excited state prop-
erties of quantum many-body systems. Here, we apply this
method to calculate the energies and spectral weights of the
elementary excitations in square lattice, S= 1/2 Heisenberg-
Ising magnets by expansion around the Ising limit to order
(J~/J, )' .

Let us briefiy summarize the results. The spin-wave spec-
trum has an energy-gap for J„&1, , which vanishes as the
Heisenberg limit (J~ =J,) is reached. Using series extrapo-
lation methods to estimate the dispersion in the Heisenberg
limit, we find a spin-wave velocity which agrees with 1/S
expansions and other previous estimates. Along the line

q =q~, the dispersion is nearly uniformly renormalized
with respect to its classical value. Measurable deviations are
found in other directions. In particular, along the line
q~+ q~

= ~ the spin-wave energy is maximized at
(m/2, m/2) and it exceeds its value at (m, O) by about 7%.

Another quantity that has been calculated by this method
is the single-magnon contribution to neutron scattering, that
is, the coefficient associated with the 8' function in the dy-
namic structure factor. When compared with the equal-time
transverse correlation function, it yields the relative weight

of multiple-magnon and single-magnon contributions to the
neutron-scattering spectra at different wave vectors. We find
that over substantial parts of the Brillouin zone approxi-
mately 20% of the total spectral weight is associated with the
multiple-magnon excitations even though the relative weight
of such excitations vanishes near (0,0) and (7r, 7r)

The Heisenberg-Ising Hamiltonian under consideration is
defined by

M=J, g s',:s,'+u( s', ,s. +s', s)Y,

(l ~')

2 —(5/3) n + 0.31712963a —0.41923376n6

+ 0.27099699u —0.38943351u' +- (2)

where the sum runs over nearest-neighbor pairs on a square
lattice for which the lattice constant is the unit length
(a= 1), and n= J~/J, . In the Ising limit, n=O, there are
two degenerate ground states and the single-magnon excita-
tions are single spin Hips with respect to the Neel states. In
this limit the excitations are purely local or, alternatively, one
could say that the magnon energies are degenerate over the
entire band. For uW 0, the single-magnon states evolve into a
set of states with a nonzero dispersion. The key to calculat-
ing the spin-wave dispersion is to construct an effective
Hamiltonian for the states which are the natural, perturba-
tively constructed extensions of the single spin-flip states at
finite u. The effective Hamiltonian is then readily diagonal-
ized by Fourier transformation.

Because the spins on the two sublattices are oriented in
opposite directions, the single spin-Hip states naturally divide
into two sets, those corresponding to S'=+ 1 and those with
S'= —1. The effective Hamiltonian, which conserves S',
thus connects only the basis states with spin flips on the same
sublattice: this ensures that the spin-wave spectrum is degen-
erate between wave vectors (q, qy) and (vr —q, , ~ qY). —
The full effective Hamiltonian to order u' is presented in
Table I.

For u@1 there is a gap in the spectrum, the minimum
being at (0,0) and (m, m). The expansion for the gap is
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TABLE I. Effective Hamiltonian for the Heisenberg-Ising model
elementary excitations in real space, up to an overall factor of four.
The dispersion in reciprocal space is found by summing all of the
given real-space series with a factor (1/4) [cos(q„r„+q rY)

+cos(q, r, qr )—+cos(q, r +q r,)+cos(q, r qYr, )]—, and then divid-

ing by 4.

Series

(0,0)

(2,0)

(2,2)

(3,1)

(3,3)
(4,o)

(4,2)
(4,4)
(5,1)
(5,3)
(5,5)
(6,0)
(6,2)
(6,4)
(7,1)
(7,3)
(8,0)
(8,2)
(9,1)
(10,0)

8 —0.666666u + 0,664352u
—0.292737u + 0.201076u —0.177446n'

—4 u + 1.222222u —0.541756n
+ 0.513359u —0.430609n'

—2u +0.111111u —0.290209u
+ 0.255912u —0,331992u'

—0.291667n" —0.071979u + 0.060564u
—0.133137n'

—0.388889u —0.177120u + 0.143711u
—0.220432u '

—0.072627u + 0.002003u —0.029703u'
—0.048611u"—0.074359u +0.021335u

—0.055154n '
—Q. 108941u —0.013755u —0.050071u '

—0.016444n —0.010852u
—0.043576u —0.030875u —0.034415 u '

—0.026311u —0.021359u'
—0.005482 u
—0.003631u —0.009438u —0.011028u '

—0.013155u8 —Q.Q17717u
—0.009137 u '
—0.003759u —0.009967 u '

—0.005221 u''
—0.000235u —0.001596n'
—0.001958u '
—0.000435u '

—0.000022u '

2C(u)D(n) =4n —2.305555u +2.410512u

—3.064g95n +4.100549a' + . (3)

Since we expect only a weak, energylike singularity in this
series at a=1, we can sum it by Pade approximants. The
near-diagonal approximants [2/2], [2/3], and [3/2] give esti-
mates of 2.779, 2.785, and 2.785, respectively, which lead to
values for the spin-wave velocity c/Ja of 1.667, 1.669, and
1.669. In the large-S limit c/Ja = v 2, so the quantum renor-
malization of the spin-wave velocity is Z, = 1.18. This num-
ber is in excellent agreement with high-order spin-wave

which agrees completely with the "mass gap" calculated by
Zheng et al. General arguments tell us that the gap must
close in the Heisenberg limit, +=1. Moreover, we expect
that for small q =

~ q~ the spectrum has the form
e(q)=[A(n)+B(a)q ]",where A(u)~0 as n~l. The
spin-wave velocity in the Heisenberg limit is given by
B(1)". In order to calculate the spin-wave velocity, we ex-
pand e(q) in powers of q, e(q) = C(u) +D(a) q +, and
identify C=A" and D=B/2A" . Thus the square of the
spin-wave velocity for the Heisenberg model is given by the
a~1 limit of the series

0
(0,0) (m, 0) (mi2, z/2) (0,0)

FIG. 1. Spin-wave spectrum for the Heisenberg model, in units
of J, along three lines in reciprocal space. The solid circles with
error bars are the results from the series expansions; the solid line is
the classical spin-wave spectrum multiplied by an overall factor
Z, = 1.18.

S(q, co) = dt e '"'g e'~'(S'(0, 0)S'(r, t)
r

+S (0,0)S (r, t)). (4)

calculations ' and previous indirect estimates" using the hy-
drodynamic relation c = p, /y~, where p, is the spin stiff-
ness and y~ the uniform transverse susceptibility.

Away from the gapless points (0,0) and (m. , m) the spin-
wave spectrum for the Heisenberg model can be estimated
by direct Pade approximants. Along the line q =q, the
spectrum, within our numerical uncertainties, is uniformly
renormalized with respect to the classical (large-S) spectrum.
However, along the line q =0 appreciable differences ap-
pear. In particular, the excitation energy at (m. ,O) appears to
be a shallow local minimum along this line, and is lower
than that at (m/2, m/2) by about 7%. Note that at the classical
and 1/S levels the spin-wave spectrum is degenerate at
(m, O) and (m/2, m/2). A plot of the dispersion relation along
selected directions is shown in Fig. 1. A hint of the devia-
tions from classical spin-wave theory which we have found
near (m, O) can be seen in the results of the projector quan-
tum Monte Carlo calculations of Chen et al. ,

' The first cal-
culation of the spectrum via spin-wave expansion to order
1/S by Igarashi and Watabe' using the Holstein-Primakoff
transformation also suggested that (7r,O) would be a local
minimum for the spin-wave spectrum; but that minimum is
no longer present in the more recent spin-wave calculations
by Egarashi. The spin-wave calculation by Canali et al. '

based on the Dyson-Maleev transformation does yield results
qualitatively similar to ours, with e(m/2, m/2)ie(m, O) —1)0,
albeit with a value closer to 0.02 than 0.07. However, the
two sets of results have a noteworthy discrepancy: those of
Canali et al. indicate e(m/2, m/2) should lie above the uni-
formly renormalized classical spectrum, rather than e(7r, O)

lying below it, as we find.
We now turn to the spin-wave spectral weights. The mag-

netic neutron-scattering cross section is proportional to the
dynamic structure factor, given by the expression
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TABLE II, Single-magnon spectral weight series in real space. To
evaluate the residue A(q) carry out the sum described in the pre-

ceding table caption. 0.3—

Series

(0,0)

(1,0)

(2,0)

(2,1)

(2,2)
(3,0)

(3,1)
(3,2)
(3,3)
(4 0)
(4, 1)
(4,2)
(4,3)
(4,4)
(5.0)
(5,1)
(5,2)
(5,3)
(5,4)
(6,0)
(6,1)
(6,2)
(6,3)
(7,0)
(7,1)
(7,2)
(8,0)
(8,1)

(9,0)

0.5 —0.041667N +0.011685a
—0.030642N +0.024677 n

—0.666667u+ 0.110185a —0.130751n

+0.117059N —0.153300n
0.194444N + 0.084876u —0.035514N

+ 0.092202N8

0.097222u +0.072647 u" —0.015601u
+ 0.057647 u

—0.216667u —0.096930N +0.055191u
—0.151490n

0.065365n + 0.008393N +0.030857N
—0.036111a —0.049374u + 0.006892u

—0.045770n
0.087153N + 0.034750n +0.054776N
—0.074005 n —0.018980u —0.049672N
0.018793a + 0.015430u
0.010894a +0.018817a +0.018378N
—0.037003a —0.028024a —0.036609N
0.028190u6+ 0.029517u
—0.023254N —0.021256a
0.007614N
—0.003700u —0.009765N —0.011880n
0.011276N + 0.021890N
—0.013953u —0.018825a
0.012182a8
—0.009425GY

0.000940n +0.004772u
—0.004651a —0.011938a
0.006091u
—0.006284n
—0.000332a —0.002181a
0.001740N
—0.002693N

0.000109N
—0.000673N

—0.000037N

We consider the T=0 limit, where the angular brackets refer
to ground-state expectation values. In general, we expect

S(q, co) to consist of a sum of two parts,

0.2—

0.1 :

X
X

(vt, 0) (0,0) (~,0) (ni2, ~i2)

To determine the residue A(q), we need to restrict the inter-
mediate states that arise in the calculation of the expectation
values to be single-magnon states, which gives the expres-
sion

A (q) = g e'q' "(S"(0,0)WS'(r 0) + S~(0,0)WS'( r,O) ),

(7)

where W is the projection onto the manifold of single-
magnon states. In the cluster expansions, each single-
magnon state evolves with the coupling u, and is of the form

where li) is a single-magnon state in the Ising limit and

ln) represents basis states (eigenstates in the Ising limit)
which are not degenerate with the single-magnon states.
However, the states

l P;) for different i are not orthogonal to
each other when u@0. Thus in order to construct the projec-
tion operator, we need to define the overlap matrix

g; J=(P;l P,). Then the projection operator onto the single-
magnon subspace is given by the expression'

FIG. 2. Heisenberg model multiple-magnon spectral weight
(crosses, narrowest error bars) and the ratio of the multiple-magnon

spectral weight to the total spectral weight as determined by ex-
trapolations for the multiple-magnon weight series (solid squares,
widest error bars) and by the difference of extrapolations for the
total weight and the single-magnon weight (diamonds, intermediate
width error bars).

S(q, ni) =A(q) 8[vi —e(q) ]+B(q, ni)

Here e(q) is the spin-wave dispersion and A(q) is the resi-
due or spectral weight associated with the spin-waves.
B(q, co) is associated with multiple-magnon excitations,
which are present because a single spin Hip in an antiferro-
magnet cannot be exactly represented as a superposition of
single-magnon states. Integrating S(q, co) over all frequen-
cies yields the equal-time correlation function

S(q) = g e'q'(S (0,0)S (r,O)+ S~(0,0)S~(r,O)). (6)

The expansion coefficients for the residues in real space as a
function of the vector distance are given in Table II. The
coefficients for the transverse structure factor are given in
Ref. 5.

We can now estimate the multiple-magnon contribution to
neutron scattering by simply subtracting A(q) from the

equal-time correlation S(q). To get to the Heisenberg limit a
series extrapolation is needed. Since the series for the
multiple-magnon weights is reduced by two terms (the first
two being zero) compared to the parent series, one might
suspect it would be better to extrapolate the series for the
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total cross section and the single-magnon contribution and
take differences; we have used both methods to estimate the
multiple-magnon weights, carrying out the extrapolations by
direct Pade approximants. In Fig. 2 results are presented for
both the multiple-magnon spectral weight as well as the ratio
of the multiple-magnon weight to the total spectral weight,
along several lines in the Brillouin zone. We see that the
multiple-magnon contribution is particularly large near
(~,0) (where, unfortunately, the extrapolation uncertainties
are largest as well) and amounts to roughly a quarter of the
total spectral weight. The spin-wave calculations of Igarashi
and Watabe' yield roughly twice as much spectral weight in
the multiple-magnon excitations as we find by expansions
about the Heisenberg-Ising model; however, given Igarashi's
later remarks about the incorrect treatment of umklapp pro-
cesses in that work, we do not view the discrepancy as sig-
nificant. Furthermore, the spin-wave calculation of Canali
and Wallin' yields multiple-magnon weights consistent with
ours.

Recently, Stringari' has developed general bounds and
sum rules for single-magnon and multiple-magnon spectra at
special wave vectors. Near q= (0,0) the single-magnon spec-
tral weight vanishes linearly while the multiple-magnon
weight vanishes quadratically; and near q = (~, vr), the

single-magnon spectral weight diverges as ~(vr, 7r) —
q~

while the multiple-magnon weight goes to a constant. Our
results are consistent with all of these requirements.

In summary, series expansions and extrapolations have
been carried out for dynamic properties of the S= 1/2 square
lattice Heisenberg-Ising model. Our numerical results indi-
cate that the Heisenberg model spin-wave spectrum is close
to but noticeably different from a uniformly renormalized
classical spectrum. In addition, the single-magnon and
multiple-magnon spectral weights have been estimated
throughout the Brillouin zone. In light of our numerical re-
sults, which largely confirm the deviations from linear spin-
wave theory found in the higher-order calculations by Canali
et al. ,

' ' it would be interesting to examine the inelastic-
neutron-scattering data on the antiferromagnetic parent com-
pounds of the cuprate superconductors to look for the
multiple-magnon excitations and variations in the spin-wave
energies along the line q +q = m.
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