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Transport through dirty Luttinger liquids connected to reservoirs
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It is shown that the conductance of a weakly disordered Luttinger-liquid quantum wire connected to non-

interacting leads is affected by electron-electron interactions in the wire. This is in contrast to the case of a

perfect wire the conductance of which is given by e /h regardless of interactions in the wire. The disorder-

induced correction to the conductance scales with temperature and/or the wire length, the scaling exponent

being determined only by the interaction strength in the wire. These results explain recent experiments on
quasiballistic GaAs quantum wires.

Transport through quantum wires is commonly believed
to be strongly affected by electron-electron interactions. In
particular, if only one channel of transverse quantization is
open and the electrons are in the Luttinger-liquid state, ' the
conductance of a perfect wire is expected to be Ke /h,
where the parameter K characterizes the sign and the
strength of the interactions: K(1 for repulsion; K)1 for
attraction; K= 1 in the absence of interactions. Moreover, in
the case of repulsion, disorder in the wire is predicted to
suppress the conductance much more strongly than in the
noninteracting case. This suppression comes about via
temperature- and/or length-dependent corrections to the con-
ductance of a perfect wire that diverge in the limit T~O or
L~~ even for an arbitrarily weak disorder, indicating the
tendency to an insulating behavior. The exponents of the T
and L scalings are also determined by the parameter K. This
has to be contrasted with the noninteracting theory, which
predicts T-independent conductance (at least for T smaller
than the interband energy spacing). The physical explanation
of the interaction-induced breakdown of conduction is that
the 2kF backscattering due to impurities stimulates the diver-
gence of charge-density-wave fluctuations with the period
2m/2kF . With all these dramatic differences between the in-
teracting and the noninteracting theories, an experiment
seems capable of discriminating between the two.

At first sight, however, a recent experiment on high-
mobility GaAs quantum wires has given support to neither
theory. Indeed, at higher temperatures (T)1.2 K) the ob-
served value of the conductance was e /h with a high degree
of accuracy, which seems to support the noninteracting
theory. On the other hand, reduction of the conductance was
observed at lower T, and by fitting the observed T depen-
dence of the conductance into the interacting theory the au-
thors of Ref. 8 obtained a value of K=0.7. This seems to
support the interacting theory, but also implies that at higher
T, where the disorder-induced correction is small, the reduc-
tion of the conductance should have been of the order of
30%, which clearly contradicts the data.

A partial resolution to this paradox has been given in two
recent papers, ' in which it was emphasized that the model
of a homogeneous Luttinger liquid leading to the result
Ke /h of Refs. 2—5 is not adequate to a typical experimental
situation. Indeed, a narrow wire is always connected to wide

electron reservoirs by the conducting leads. As the leads and
the reservoirs are necessarily not one dimensional, the elec-
trons there form not a Luttinger liquid but rather a Fermi
liquid which, for present purposes, can be considered as a
noninteracting Fermi gas. Consequently, the effective one-
dimensional model considered in Refs. 9 and 10 was that of
an inhomogeneous Luttinger liquid with the interaction
strength varying from some nonzero value in the central part
of the system (the "wire") to zero in the outer parts (the
"leads" ). It has been shown that in the absence of disorder
the conductance of such a system is given by e /h regardless
of the interactions in the wire. This explains the absence of
the conductance renormalization at higher T observed in Ref.
8. It must be added that remarks suporting this result were
made earlier by Kane and Fisher and by Matveev and
Glazman.

The question that still remains open is whether the experi-
mentally observed T dependence of the conductance is a
signature of a dirty Luttinger-liquid state in the wire itself or
is a reAection of the presence of the leads as well. In this
paper, I show that the T- and L-dependent corrections to the
dc conductance of a weakly disordered wire are determined
entirely by the interactions in the wire, and are not affected
by the presence of the noninteracting leads. This result, taken
together with the results of Refs. 9 and 10, suggests that the
experimental observations of Ref. 8 can be seriously consid-
ered as an indication of the Luttinger-liquid state in GaAs
quantum wires.

The result announced above can be entirely anticipated
from the following simple physical picture. Consider a
weakly disordered wire containing a Luttinger liquid and
adiabatically connected to the Fermi-liquid leads. In the ab-
sence of disorder, the finite resistance of a perfect wire
(=h/e ) is entirely due to contact resistance some of
the electrons coming from the wide leads are rejected as the
channel becomes narrower. This reAection takes place out-
side the wire, where the electrons are in the Fermi-liquid
state; therefore, the contact resistance is not affected by the
interactions in the wire. Weak disorder in the wire gives rise
to an additional contribution to the resistance. This contribu-
tion is determined by the scattering in the wire, where elec-
trons are in the Luttinger-liquid state, and therefore this con-
tribution has features typical of a Luttinger liquid but not of
a Fermi liquid.

0163-1829/95/52(20)/14368(4)/$06. 00 R14 368 1995 The American Physical Society



52 TRANSPORT THROUGH DIRTY LUTTINGER LIQUIDS R14 369

As in Refs. 9 and 10, I consider an infinite Luttinger liq-
uid separated into three regions: the wire (—L/2&x&L/2)
and the leads (x~L/2). The interaction parameter K changes
abruptly from the value K~ in the wire to the value KL in the
leads. Having in mind the experimental system studied in
Ref. 8, I shall focus on the case of repulsive interaction in the
wire (i.e., Kiv~ 1) and put KI = 1 at the end of the calcula-
tion. The length L corresponds to the length of that segment
of the original system where the applied electrostatic poten-
tial varies most appreciably. Consequently, the electric field
is assumed to be zero for ~x~~L/2. I also assume that a
random potential V(x) is present only in the wire, i.e., for
~x~~L/2, and is weak enough to be treated via perturbation
theory. The current X=ej is related to the electric field by

~du
I(x, t) = dx' e '"'o„(x,x')E. „(x'),

Lfz—
where E„(x) is the temporal Fourier component of the elec-
tric field at point x, and o. (x,x') is the nonlocal ac conduc-
tivity, which is given by the Kubo formula

ie ~P
o„( x,

x.') = (T,*j(x,r)j(x',0))e '"'~„-;„,. (2)
cd o

(I set fi = 1.) In the bosonized form, the particle-number cur-

rent is given by j= —i8,$/+m and Eq. (2) reduces to

l
BG(X,X') = —

z dXidXzV(xi) V(xz)cos(2kF(xi —xz))a j
X((4(X)0(X )Q(Xi Xq))o
—(4'(X) 0'(X'))o(Q(Xl »2))o) (6)

2ie Co coF ~L!2—Bo.„(x,x') = dxG -(x,x)G„-(x,x')
77 Cd J —I,j2

where X=(x, r), ( .)o stands for averaging over Gaussian
fiuctuations of P with the weight So, and

Q(X X ) ei2~m[$(xl) —$(x2)j

At this stage, for the sake of simplicity I choose V(x) in the

form of white noise: V(xi)V(x2)=n;u B(xi —x2), where
n; is the concentration of impurities" and u is the impurity
strength. "The effective elastic mean free path / (in the ab-
sence of the interactions) can then be defined as
1/Y=n;u /a rd„, where cdF is the (nonuniversal) ultraviolet
energy cutoff (of the order of the Fermi energy). Although in
the real GaAs system the impurity potential is long ranged,
the expectation is that this simplification cannot significantly
affect the final results, provided that 8 is replaced by the
correct mean free path for a more realistic disorder
potential. ' Thus I find the correction to the nonlocal conduc-
tivity:

LM
o.„(x,x') = e G co(x ix ) I re ~i ~ e~—

7T CO

fP
G„-(x,x') = d r(T,*@(x,r) @(x',0))e

aO
(3b)

X [Fo(x)—F„-(x)]~„-

where 6„- is the propagator in the absence of disorder and

F„(x) is the r--Fourier transform of the (inhomogeneous)
2kF density-density correlation function

F(x, r) =(Q(x r,x0) )o

where G„- is the propagator of the boson field P. The (Eu-
clidean) action of the spinless Luttinger liquid is given by
S=So+S;, where

4~
=exp — g (1—e '"')G„-(x,x) . (9)

rp 1
dx d r (8,$) + v (x)(8„$)

JO

(4)

The propagator G„-(x,x') satisfies the equation

cd ( u(x)
~x Otx G-(»x )=8(x x )~

u(x) is the density-wave velocity, and S;, which describes
backscattering due to disorder, is given by

2 " I'/3

S;=— dx d rV(x) cos(2kFx+ 2 ~mP),a) ~o

in which a is the microscopic length cutoff. In the homoge-
neous model, ' o.„in the presence of disorder was found by
using the Luther-Peshel formula, which relates the effective
mean free time to the 2kF component of the density-density
correlator. In the inhomogeneous situation, the meaning of
the mean free time is unclear, and I will determine the
disorder-induced corrections to o.„directly from the Kubo
formula (2) via perturbation theory in S;. In what follows, I
will consider only the conductance averaged over the en-

semble of disorder realizations. Assuming that V(x)=0,
where the overbar stands for the ensemble averaging, the first
nonvanishing correction to the ensemble-averaged propaga-
tor is given by

(10)

and the following boundary conditions: (i) that G„-(x,x') be
continuous at x= ~L/2 and x=x'; (ii) that

[v(x)/K(x)]&„G„-(x,x') be continuous at x= ~L/2, but (iii)
discontinous at x=x' so that

BxG„-(x,x')i;;, o=1.Kx
In addition, I assume that infinitesimal dissipation is present
in the leads, so that G„-(~~,x') =0. To evaluate the func-

tion F in Eq. (9), one needs to know G„-(x,x') only for
L/2~x=x'~L/2. Straight—forward, albeit lengthy, algebra

leads to the result

e ~ ~+ ~+~ cosh(2x/L~)G-= +
'+ e—
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where L„—=-vw/lcol, vw is the density-wave velocity in the
wire, and ~ =—1/Kw~ 1/Kl . I now consider separately the
cases of "high" (vw/L«T&&coF) and "low" (T(&vw/L)
temperatures. (The quotations marks are intended to imply to
that the "low" temperature case can be alternatively viewed
as the "long" length case and vice versa. )

At "high" temperatures, the second term in Eq. (12) is
exponentially small (~exp[ —(L—2x)/L„-] unless co=0). The
term co=0 gives zero contribution to the sum in Eq. (9),
however, as can be seen by performing the infrared regular-
ization of the propagator (l col ~ gl co! + m ) and then letting
m —+0. Thus, only the first term in Eq. (12) has to be taken
into account. This term is precisely the same as in the case of
a homogeneous Luttinger liquid with parameter K~. Al-
ready at this stage it can be anticipated that the T scaling of
the conductance is determined by Kz. The function F is
now x independent and is given by

L 2~T
g =gp+ Bg =Kl 1 CKI

h 8 AcoF

where

(14)

I (1—Kw)
C=8~msin(mKw)

)
[I'(Kw)] .

1
I —+Kw '

Note that KI enters only in the prefactors, whereas the ex-
ponent of the T scaling is determined by K~. Tracing back
through the calculations, we can now see the reason for this.
The Kz dependence comes from the propagators in the pref-
actor of Eq. (8), which depend on the frequency of the ap-
plied field co. In the limit m —+0, they become long ranged
and contain only Kz but not K+ . The T scaling comes from
the propagator entering the function F [Eq. (9)].This propa-
gator does not depend on co. In the "high" temperature limit,
it becomes short ranged, and contains only K~ but not Kz .

I now turn to the case of "low" temperatures. In previous
work dealing with the homogeneous model, ' ' this case was
treated by employing the Lorentzian invariance of the (1
+1)D field theory, which ultimately reduces to a simple
recipe: to obtain the result at "low" temperatures, one can
take the result for "high" temperatures and replace T by
v/L, and vice versa. This recipe works, however, only if L
has a meaning of the total system size. In our inhomoge-
neous case, L is the length of the wire, which is only the part
of the system, the total system including both the wire and

2m/coFPF=
sinm7/P

After the analytic continuation co~ico —e, the limit co~0
can be taken. In this limit the remaining two propagators in

Eq. (8) are x and x' independent: lim„oG„(x,x')
=iKI/2'. ' The rest of the calculations proceed exactly as
in the homogeneous case. The resulting nonlocal dc conduc-
tivity is also x and x' independent from which, with the help
of Eq. (1), one finds that the dc conductance is g= o.o.
Recalling the result for the conductance of a perfect wire,

go=Kgb e /h, ' and restoring fi, the final result for the con-
ductance can be written as

the leads. Thus, the Tmv/L equivalence cannot a priori be
expected to work. In fact, it will be shown below that such
an equivalence exists only if electrons in the leads do not
interact, i.e., Kl = 1.

At "low" temperatures, the sum over cu in Eq. (9) can be
replaced by the integral. Performing the integration, I find

1 t~w
( ) [1 ( )2]K P w 0 2L» 0

~ 'TUgr L+2X
0 2L 2L 0+z 4i

where zo—= ~ /a+, and

x +(n +1 +y)
4(x,y,z)—= g z "ln

n=o n+1+y (17)

Evaluation of the Fourier integral jdr(1 —e'"')F(x, r) for
arbitrary & is impossible in this case. As co has now become
a continuous variable (P~~), however, it is possible to find
the asymptotics of the integrand of Eq. (8) for small co and
then analytically continue to i co. Analysis shows that in the
limit co~0 the main contribution to the Fourier integral
comes from the interval r~L/vw, where the function 4'
[Eq. (17)] can be replaced by its large-x asymptotic form:
C&(x,y, z) =lnx /(1 —z ). It can also be shown that the imagi-
nary part of Fp —F — is asymptotically larger than its real part
in the co~0 limit. After simple manipulations one then ob-
tains Fo F„=[(L/L—„)/-i r3 ]1(k),-where X —= coF /co,

z sinz
I(k) —= dz (18)

1 t
~+i ds

I(li. ) = . k 'I (s/2) I (s)sin(7rs/2),
J (. joo 117

where s=—2K+ —1 —s, and c is chosen in the domain of
analyticity of the integrand (O~Res~2Kw). For k~~, the
leading contribution to the sum over residues is given by the
smallest second-order pole at s =2K~. I then find

ink
1(1)l)--=~zx .

In the limit being considered, Fp
—F„- is x independent, and

the integration over x in Eq. (8) again gives L. The continu-
ation cu~i co —e can now be performed. Separating the real
and imaginary parts of 1n X. in Fp F, I fina11y obtain the
real part of the conductance in the form

and n—=2Kr (Kl —Kw). As we see, the exponent n, which is
going to determine the L sca1ing of Bg, depends both on
Kl and Kw and is equal to the exponent of the T scaling [i.e.,
to 2(1 —Kw)] only if KI = 1. Thus, the equivalence of T and
L scalings exists only if the electrons in the leads do not
interact. To be consistent with the physical content of the
model, I will now consider only the case Kz =1. We now
need to evaluate the asymptotic behavior of the integral (18)
for X.—+~. This can be done by using the Parseval formula
for Mellin transforms, according to which one has
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e' e' I. 21.h~ 'I' ~~'
CtPF

Reg = ———2~
h h

Similar analysis can be performed in the case of a single
potential barrier inserted into the Luttinger-liquid wire
which, in the case of a uniform interaction strength, was
considered first in Refs. 3 and 4. The result is identical to the
case of the extended random potential considered above: in
both the weak and strong disorder cases the T and I. depen-
dences of the conductance are determined by the parameter
Kz. of the wire.

The generalization for the case of electrons with spin can
readily be performed. As in the homogeneous case, ' the
exponent 2 —2K~ is replaced by 2 —K~—K~, or, if the

SU(2) symmetry of the underlying Hubbard model is pre-
served (i.e., Ktv= 1j by 1 —K~tv, where K~~ are the param-
eters of the charge/spin parts of the Luttinger liquid in the
wire.
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