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Aharonov-Bohm oscillations in a mesoscopic ring with a quantum dot
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We present an analysis of the Aharonov-Bohm oscillations for a mesoscopic ring with a quantum dot
inserted in one of its arms. It is shown that rnicroreversibility demands that the phase of the Aharonov-Bohm

oscillations changes abruptly when a resonant level crosses the Fermi energy. We use the Friedel sum rule to
discuss the conservation of the parity of the oscillations at different conductance peaks. Our predictions are
illustrated with the help of a simple one-channel model that permits the variation of the potential landscape

along the ring.

A recent experiment by Yacoby et a/. investigated the
Aharonov-Bohm (AB) oscillations in a ring with a quantum
dot (see Fig. 1). This experiment is of fundamental interest
since it depends not only on the total transmission through
the quantum dot but also on the phase accumulated by car-
riers traversing the dot. The experiment thus gives a direct
demonstration that coherent resonant tunneling and sequen-
tial tunneling are not equivalent. Yacoby et al. emphasize
two features of the Aharonov-Bohm oscillations: First, it was
found that the phase of the AB oscillations changes abruptly
whenever transmission through the quantum dot reaches a
peak. Second, it was found that the AB oscillations at con-
secutive conductance peaks are in phase. Here we discuss
these two observations, invoking only basic physical prin-
ciples, and illustrate them with a simple model calculation.

First, consider the phase jump of m in the AB oscillations,
which is observed each time a resonant condition is
achieved. In a two-terminal conductance experiment the
measured conductance is necessarily an even function of the
AB flux through the ring, G(4&) =G( —4). In a Fourier
representation of the conductance

elude that any deviations from a sharp jump must be a con-
sequence of fluctuations in the external control parameters.

We analyze the second feature, the conservation of parity
of the AB oscillations at consecutive peaks, with the help of
the Friedel sum rule, which remains valid in the presence of
electron-electron interactions. ' ' The Friedel sum rule re-

G(4) =Go+ b, cos(2m%/4o+ 8) +

this implies that the phase 6 can only be either zero or m but
nothing in between. In the experiment the phase 8' is a func-
tion of gate voltage. If a phase change occurs as function of
gate voltage it must, therefore, be a sharp jump of zero
width. We call the two possibilities 6= 0 and 8'= m the parity
of the AB oscillations. In contrast, Yacoby et aI. compare the
sharp phase jump with an analysis that treats the AB effect as
an interference of two partial waves. However, the AB effect
in a conductor includes the partial waves generated by reflec-
tions. This simplified analysis leads Yacoby et al. to argue
that a sharp phase jump is in contradiction with a noninter-
acting electron-transport picture. Early work on the transmis-
sion through one-channel loops does indeed show a
symmetry-breaking term. Closer inspection of this result
shows that the transmission probability is an even function of
flux ' in a two-terminal geometry. Here we show that the
abrupt phase change is a consequence of microreversibility
only. It is a phenomena that occurs independently of whether
interactions are significant or not. Moreover, the phase jump
is abrupt even if there exists inelastic scattering. We con-
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FIG. 1. (a) Schematic representation of a mesoscopic ring
threaded by a magnetic Aux 4 with a quantum dot included in one
of its arms. (b) Lattice model for this system.
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FIG. 2. Transmission probability as a function of dot potential
ED for fixed potential on the rest of the ring (fixed ep). The full and
dotted lines indicate the regions of positive and negative parity,
respectively (see text). The dashed line corresponds to the phase of
the transmission amplitude.

In order to understand the behavior of the AB oscillations
in a device like that of Fig. 1(a) we start by analyzing a
single-channel noninteracting model. Our aim is to investi-
gate both the inhuence of inelastic scattering within the dot
and of the effective potential landscape along the ring. We
use a tight-binding representation of the electron states [the
corresponding lattice model is represented in Fig. 1(b)],
which allows for a qualitative description of any potential
profile. The effect of the magnetic Aux 4 is taken into ac-
count by a phase factor affecting the hopping matrix ele-
ments V;, . We denote by L, R, D, and F the left and right
leads, the arm with the dot, and the free arm. The effective
electrostatic potential on the dot arm is parametrized by the
quantities eD (dot potential), es (barrier heights), and ep (po-
tential outside the dot) which are schematically represented
in Fig. 1(b). Inelastic scattering is simulated by a third
lead ' ' (denoted by I) coupled to the dot arm by a hop-
ping element VI.

The transmission properties of this model can be easily
obtained in terms of Green functions. In the absence of
inelastic scattering (VI=0), the two-terminal conductance is
proportional to the transmission coefficient TL&, which can
be written in terms of the retarded Green functions as

lates the phase Erg accumulated by a carrier traversing a
region 0 to the electronic charge in this volume. The incre-
ment of phase and charge are related by

/t g=e/t r//7r. (2)

If the volume 0 is chosen to include only the quantum dot
then each addition of an electron to the dot requires an in-
crease of r/ by m (see Fig. 2). Associated with this phase
jump there is a parity change of the AB oscillations at each
conductance peak. Consequently, the AB oscillations at con-
secutive conductance peaks would not be in phase. This is in
contrast with the experimental observation of Ref. 1. How-
ever, what counts is not the phase of the quantum dot alone.
The ring structure is connected to leads, which are in turn
connected to reservoirs. As will be shown here, it is the
phase accumulated in the entire coherence volume that
counts. As a consequence, the relative parity on consecutive
resonances might change if the addition of an electronic
charge to the quantum dot is accompanied by the addition of
a charge ue to the leads of the ring. Over large distances, the
arms of the ring can be expected to remain in a charge neu-
tral state. The additional charge is most likely accumulated at
the barriers that separate the arms of the ring from the quan-
tum dot. The physical reason is that the gate used to regulate
the charge on the dot couples capacitively also to the gates
used to form the barriers between dot and ring. A strict con-
servation of parity of the AB oscillations occurs if the total
charge (1+u)e added is zero or an even multiple of 2e.
Interestingly, because the phase observed in the transmission
coefficient can only be 0 or m a "phase locking" occurs.
Even if the additional charge n is not exactly an odd integer
the parity of the AB oscillations at a number of consecutive
conductance peaks will be the same. We expect that the par-
ity of the AB oscillations is conserved only over a limited
number of peaks and that this number depends on the geom-
etry and electrostatic properties of the sample.

TLR= 4VLVRI GO J4'+ t(EF) I2™gL(EF)ImgR(EF), (3)

where gL R(EF) denote the local Green functions
on the uncoupled leads at the Fermi energy and VL z
are the hopping elements connecting the ring to the
leads. One can establish a correspondence between
2 VL VR /Img L(EF)Img R(EF)G 0&+ t (EF) and the elastic
transmission amplitude t for this single-channel case. The
phase r/ of t is, therefore, equal to that of Go~+i(EF).

Taking the case where VI = VR=O as the unperturbed
case (for which the isolated ring Green functions are denoted
by g;,) and using standard Green functions techniques, '

Go&+& can be written as

go,N+1

(I-go,o&L)(1 —gN+lp+1&R) —goy+i&RgN+1 0&L'

(4)

where $ = V g; u= L,R. For a rin—g without inelastic
scattering the functions g;, behave as exp[i@i—j)/(X
+1)]f;J(p), where 2/= 7r4/40 is the phase associated
with the magnetic fiux and f;, is a real even function of
P. The transmission coefficient, therefore, satisfies the sym-
metry relation TLR(4) = TLR( —tIi), which implies that
BTLR/BtIi]c, p=O in this limit.

In the presence of inelastic scattering the isolated ring
Green functions g; 1 get an extra phase that depends on the
distance ~i

—
j~ and BTLR/84i]g& p=O no longer holds. No-

tice, however, that time-reversal symmetry always implies
that TLR(4)=TRL( —tIi). We can analyze the flux depen-
dence of the two-terminal conductance in this case by cou-
pling the ring to the third lead. The condition of no net cur-
rent Aow through this lead yields a two-terminal conductance
proportional to the total transmission probability, given by
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TL ITIR
total LR (5)

where RII is the reflection probability on the third lead. Tak-

ing into account the property X,T;,=1—R;; one can easily
show that

L I IL
Ttotal ~ RLL+

~ II
(6)

where e„ is the isolated ring eigenvalue closest to E„, P„
denote the components of the corresponding wave function,
and A„and V„are the real and imaginary parts of the elec-
tron self-energy due to coupling with the leads

(~.+ ir.=
I y.,lz&igi+

l P.„„l'Vzg~). The only flux sen-

sitive quantities in this expression are e„and P„. In particu-
1

lar, P„(P)= exp[iPj/(N+1)]P„(0), and one has

~+0++ 1
~ /= 0 ~oopi+1»'

~ &0,W+~
2

gyz /=0 0,N+1 (E g )+
/a e„

X 2 JP 0

where we have used e„(P) = e„(—@). The behavior of b. z
near a resonance is thus given by

EF En An 8
2 LR (E g )2+ rz g@2 Q=O (9)

and therefore T p(4) =Tp ( 4) i—mplies that T„„& is an
even function of the magnetic Aux. This simple calculation
shows that even in the presence of inelastic scattering the
only possible phases for the AB oscillations are 0 and m and
thus the transition from one to the other should always be
abrupt. The only effect of inelastic scattering is to reduce the
amplitude of the AB oscillations by decreasing the direct
elastic transmission TLR .

Notice that this result is also true at finite temperatures:
thermal averaging can degrade the amplitude of the AB os-
cillations but cannot introduce additional phases between 0
and ~. The only possible sources of phase smearing in the
experiments should be traced to fiuctuations in the gate volt-
ages.

We can thus study the parity of the AB oscillations by
computing b, z = 8 Tr z /84 J~, o, which tells us whether
8=0 (hz~0) or 8= zr (Az)0). We now show how the
parity change in the AB effect is related to the parity effect of
the isolated ring. It is well known that, for the case of
spinless electrons, the ring with an odd number of particles
has a diamagnetic response, whereas for an even number the
response is paramagnetic. In a noninteracting model the par-
ity is determined mainly by the uppermost occupied state.
Near a resonant level, we can approximate G0&+z as

We see that when the resonance corresponds to a paramag-
netic state of the isolated ring (i.e., 8 e„/8$ J@—p~O)
changes from positive to negative as the state crosses the
Fermi energy, while the opposite behavior is found when
8 e„/8@ J~=o&0.

Next, let us investigate why the phase of the AB oscilla-
tions on consecutive dot resonances appears to be the same.
Within the spinless electron model and assuming that the
effect of the dot gate is to modify the value of eD alone, Eq.
(9) predicts that the AB oscillations on consecutive reso-
nances should be out of phase. This is illustrated in Fig. 2,
where Trz(C&=0) is plotted as a function of eD. The full
and dotted lines indicate the regions where 52 is positive or
negative, respectively. We also show the phase of the trans-
mission amplitude, which, as mentioned above, is propor-
tional to the electronic charge accumulated within the sample
as 60 ED increases. As can be observed, this rigid model for
the potential landscape variation leads to an increase in the
charge of one electron each time a resonance is crossed.

In a real situation one expects the potential in the regions
close to the QD (not only within the dot) to vary as the gate
voltage is modified. This effect can be included in our model
by allowing e0 to vary together with eD . Let us assume that
this variation can be described by Beo=aBeD/(pohE),
where p0 is the mean density of states for the ring regions
where the potential equals e0 and AE is the mean separation
between dot resonances. The actual relationship between e0
and eD should depend on the mutual capacitances between
the ring and the gate electrodes. The effect of this self-
consistency condition is simply to add a fractional charge
ue-ae to the ring between two resonances. Note that o. and
a are in general not equal, since the charge added depends on
the actual density of states and not the average density of
states p0.

Figure 3 illustrates the effect of increasing the parameter
a. Notice that the calculated transmission exhibits now a
varying background in addition to the dot resonances, which
reflects the level structure of the ring. In case (a) the extra
charge added to the system is ue-0. 30e per cycle. It can be
observed that an additional phase jump appears close to the
third resonance. Notice that the second and third resonances
exhibit now the same parity. For increasing a new phase
jumps appear between resonances. In this way, when o.-1
[Fig. 3(b)] several peaks with the same parity may be found.

Since the phase 6 of the AB oscillations can only be 0 or
vr it is not necessary to add exactly a multiple of 2e to find
the same phase at consecutive peaks. Instead, the parity of
the AB oscillations at the nth resonance will be determined
by the integer multiple of charge en, z where n, ff is the inte-
ger that is closest to the charge n(1+n) added after n
cycles. For —1~n~ —0.5 (if the ring and dot remain ap-
proximately charge neutral), this will create a sequence of
effective charge states en, + with n,~=0 for a number of
cycles k. The parity will change after the first k cycles,
which add half an electronic charge and cause the effective
charge state to jump to en, &=e. Hence for this case the
number of parity conserving cycles is k(1+ n)=1/2 or
k=(1/2)(1+ n) '. For 0.5~a~1 (if we add nearly two
electrons) we will still obtain an effective charge sequence
en, ff with en, ff equal to an even multiple of e but only for a
finite sequence of cycles. The parity will change after k
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FIG. 3. Same as in Fig. 2 but allowing eo to vary together with

eD. Case (a) corresponds to parameter a-0.3 and case (b) to
0 1.

cycles, for which a deficit of half an electronic charge occurs.
For this case the number of parity conserving cycles is

k(~ a —1~) = 1/2 or k= (1l2)(~ a —1() . If tz is in the inter-
val —0.5~ o.~0.5, then the parity will change at every peak
except, occasionally, when the effective charge state jumps

by 2e. For n in this interval we can at most observe two
consecutive peaks which are in phase. Thus we And that it is
possible to observe many consecutive conductance peaks at
which the parity of the AB oscillations is conserved if
n- —1 or if u-1. The question of which of the two cases,
the approximate preservation of overall charge neutrality or
the addition of nearly two electrons (or another even mul-
tiple) per cycle, is realized in the experiment cannot be an-
swered without a detailed determination of the relevant ca-
pacitance matrix for the structure.

Our discussion applies similarly to the case of a back-
gated sample, where a changing Fermi level affects both the
phase of the dot and of the arms of the ring. The ideas pre-
sented here can be tested in an experiment in which the
charge of either the dot or of the arms of the ring is con-
trolled independently. If instead of the third lead of Fig. 1(b)
an additional gate is brought into proximity with the lower
arm of the ring, a change in the voltage of this gate should
permit a change in the charge and the phase of the ring. As a
function of this voltage we predict that an inversion of the
AB-effect parity from one peak to the next could be ob-
served.

We therefore conclude that within the spinless electron
model the conservation of parity of the AB phase on con-
secutive resonances is indicating that either zero or an even
number of electrons are added to the system per cycle. We
expect that the inclusion of spin degrees of freedom does not
change our conclusions: The charging energy of the dot will
ensure that in each cycle at most one electronic charge can
be added to the dot. The important conclusion of our analysis
is that the phase of AB oscillations is not related to the dot
charge alone but to the total charge of the system. It is the
charge of the ring and the dot that counts.

Vote added in proof. Closely related works by Bruder,
Fazio, and Shoeller and by Yacoby, Heiblum, Mahalu, and
Shtrikman have come to our attention.
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