PHYSICAL REVIEW B

Light scattering from gap excitations and bound states in SmB₆

P. Nyhus and S. L. Cooper

Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801

Z. Fisk and J. Sarrao

Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306 (Received 5 July 1995)

Gap formation and in-gap bound states are investigated in SmB₆ using Raman scattering. Below 70 K, we observe an abrupt suppression of electronic scattering below $\sim 290 \text{ cm}^{-1}$ that is not consistent with the predicted temperature dependence of a hybridization gap. We also find that gap formation in SmB₆ is associated with the appearance of a sharp $E_g(\Gamma_3^+)$ symmetry 130-cm⁻¹ excitation. We discuss several possible interpretations of this excitation, including a Γ_7 - Γ_8 crystal-field transition and a transition between bound $4f^55d$ configurations.

 SmB_6 has been suggested to belong to an interesting group of mixed-valence compounds known as Kondo insulators,¹ which have high-temperature properties typical of Kondo metals, including local moment behavior and strong Kondo scattering of carriers, but have the lowtemperature properties of nonmagnetic, small-gap semiconductors $[\Delta \sim 4-14 \text{ meV in SmB}_6 \text{ (Refs. 2-4)}]$. There is still substantial debate concerning the nature of the ground and low-lying excited states in the Kondo insulators. One description of these materials is based on the noninteracting (U=0) periodic Anderson model (PAM) at half-filling, which predicts an insulating "hybridization" gap at T=0due to coherent hybridization between the broad 5d-6s conduction band and the localized f states. However, Kondo insulators have also been described by the PAM in the large Kondo coupling regime $(J \rightarrow \infty)$, whose ground state is a collection of local singlets, each comprised of a localized spin bound to a conduction electron. Excitations out of this ground state are expected to include spin gap excitations $(\sim \Delta_s)$ between singlet and triplet bound-state configurations, and charge gap excitations ($\Delta \ge \Delta_s$) associated with the delocalization of the bound charge.⁵ The importance of charge fluctuations⁶ and the Coulomb interaction⁷ in Kondo insulators has also been stressed. Finally, the ground state of SmB₆ has also been associated with other exotic states, such as a Wigner crystal⁸ and a $4f^6 + 4f^5\tilde{d}$ excitonic state with $A_{1g}(\Gamma_1^+)$ symmetry.⁹

As a powerful tool for studying the energy and symmetry of both dipole-allowed and -forbidden excitations, Raman scattering promises to be useful for elucidating the nature of the ground and low-energy excited states of correlation gap insulators. For example, recent studies of FeSi have demonstrated the efficacy of light scattering for studying energygap development in such systems.¹⁰ In this paper, we present a Raman-scattering study of gap formation and in-gap bound states in SmB₆.

Raman-scattering measurements were performed on the (100) surfaces of single-crystalline SmB_6 prepared from an aluminum flux. The measurements were performed in a vari-

able-temperature He cryostat, using a Spex Triplemate spectrometer equipped with a nitrogen-cooled charge-coupled device array detector. Spectra were obtained with the incident and scattered light polarized in the following configurations in order to identify the symmetries of the excitations studied: $(\mathbf{E}_i, \mathbf{E}_s) = (\mathbf{x}, \mathbf{x}), \quad A_{1g} + E_g; \quad (\mathbf{E}_i, \mathbf{E}_s) = (\mathbf{x}, \mathbf{y}), \quad T_{2g} + T_{1g};$ $(\mathbf{E}_i, \mathbf{E}_s) = (\mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y}), \quad A_{1g} + \frac{1}{4}E_g + T_{2g}; \quad (\mathbf{E}_i, \mathbf{E}_s) = (\mathbf{x} + \mathbf{y}, \mathbf{x} - \mathbf{y}), \quad \frac{3}{4}E_g + T_{1g};$ where \mathbf{E}_i and \mathbf{E}_s are the incident and scattered electric-field polarizations, respectively, \mathbf{x} and \mathbf{y} are the [100] and [010] crystal directions, respectively, and where $A_{1g}(\Gamma_1^+), \quad E_g(\Gamma_3^+), \quad \text{and} \quad T_{2g}/T_{1g}(\Gamma_5^+/\Gamma_4^+)$ are the singly, doubly, and triply degenerate irreducible representations of the SmB₆ space group $(O_h^1 - Pm3m)$, respectively.

Figure 1 shows the Raman-scattering response function, $R''(\omega) = S(\omega)/[1+n(\omega)]$, of SmB₆ for various temperatures and frequency ranges, where $R''(\omega)$ is obtained from the measured Raman-scattering intensity $S(\omega)$ by dividing out the thermal factor $[1+n(\omega)] = [1 - \exp(-\hbar\omega/k_BT)]^{-1}$. The room-temperature, high-frequency Raman response of SmB₆ in the inset of Fig. 1 shows the three Raman-active phonon modes allowed by the O_h^1 -Pm3m space group, a T_{2g} mode at 730 cm⁻¹, an E_g mode at 1148 cm⁻¹, and an A_{1g} mode at 1280 cm⁻¹, all of which were observed previously by Mörke, Dvorak, and Wachter.¹¹ Additionally, the room-temperature Raman spectrum (inset, Fig. 1) exhibits a broad electronic Raman-scattering background that rises linearly at low frequencies with a broad peak near 1200 cm^{-1} , and a defect-induced phonon mode with T_{2g} symmetry near 163 cm⁻¹ whose intensity decreases roughly sixfold below 300 K. This "defect-induced" mode in SmB₆ was recently attributed to an "extra" vibrational mode induced by nonadiabatic coupling of the lattice to valence fluctuations.¹² A complete examination of the 163-cm⁻¹ mode in the context of this description is given by Lemmens *et al.*¹³

The low-temperature, low-frequency Raman response of SmB_6 is illustrated in the main part of Fig. 1. One of the most dramatic features of the low-temperature Raman response in SmB_6 is an abrupt suppression of electronic scat-

R14 308

FIG. 1. Comparison of the 70- and $15 \cdot K A_{1g} + E_g + T_{2g}$ symmetry Raman-scattering response functions, $R''(\omega) = S(\omega)/[1 + n(\omega)]$, of SmB₆, where $S(\omega)$ is the measured Raman-scattering intensity and $[1+n(\omega)]=[1-\exp(-\hbar\omega/k_BT)]^{-1}$ is the thermal factor. A suppression of electronic Raman scattering below $\Delta_c \sim 290 \text{ cm}^{-1}$, and a redistribution of electronic scattering strength to the energy range $300 \le \omega \le 400 \text{ cm}^{-1}$, is apparent in SmB₆ due to the development of an energy gap. Also evident in the 15-K spectrum is a sharp E_g symmetry excitation that develops abruptly near 130 cm⁻¹ for T < 45 K. Inset: Room-temperature, high-frequency Raman-scattering response function $R''(\omega)$ for SmB₆, exhibiting optical phonons at 780 cm⁻¹ (T_{2g}), 1148 cm⁻¹ (E_g), and 1280 cm⁻¹ (A_{1g}), and a defect-induced phonon mode at 163 cm⁻¹.

tering below $\sim 290 \text{ cm}^{-1}$, and a corresponding enhancement of electronic scattering intensity between 300 and 400 cm^{-1} , reflecting the development of an energy gap in SmB_6 for T<70 K. A similar redistribution of electronic Raman scattering due to the development of a gap (\sim 780 cm^{-1}) was also observed in the correlation gap insulator FeSi.¹⁰ Previous estimates of the gap in SmB₆ were obtained from resistivity ($\Delta \sim 4 \text{ meV}$),² optical ($\Delta \sim 4-14 \text{ meV}$),^{3,4} and point-contact spectroscopy¹⁴ ($\Delta \sim 5 \text{ meV}$) measurements. The smallest of these gap values correspond roughly to the frequency below which the low-temperature electronic Raman-scattering intensity goes to zero (see Fig. 1). However, our Raman-scattering results show that energy-gap formation in SmB₆ involves a suppression of electronic spectral weight over a substantially larger frequency range, $\Delta_c \sim 290 \text{ cm}^{-1}$, than the estimated transport gap, $\Delta_{tr} \sim 30$ cm⁻¹. Notably, Δ_c is comparable to the maximum energy for which the optical conductivity in SmB₆ is suppressed by gap formation,⁴ and is close to the onset energy of an optical absorption band that has been identified as the (direct) d-foptical gap.³

Figure 1 also shows that the suppression of spectral weight due to gap formation in SmB₆ is incomplete below Δ_c , revealing a broad spectrum of in-gap states with a roughly quadratic frequency dependence, $S(\omega) \sim \omega^2$, at low temperatures. A careful polarization study of the gap shows

FIG. 2. The $A_{1g}+E_g+T_{2g}$ symmetry Raman-scattering response function, $R''(\omega)=S(\omega)/[1+n(\omega)]$, of SmB₆ at various temperatures, illustrating (i) the suppression of electronic scattering below $\Delta_c=290 \text{ cm}^{-1}$ for T<70 K and (ii) the development of the E_g symmetry mode near 130 cm⁻¹ for T<45 K.

no evidence for anisotropy in either Δ_c or the frequency dependence of in-gap states, although the electronic Ramanscattering intensity is strongest in A_{1g} and E_g geometries. Additionally, Fig. 2 illustrates that the energy below which electronic scattering is suppressed, Δ_c , is essentially independent of temperature once the gap begins to form, and thus represents a fixed energy scale across which spectral weight is systematically redistributed by the developing gap.

The 15-K Raman spectrum (Fig. 1) also reveals that the opening of an energy gap in SmB₆ is accompanied by the development of a sharp $E_g(\Gamma_3^+)$ symmetry excitation at 130 cm⁻¹ (16 meV), an energy quite close to the optical absorption edge observed in SmB₆ [~120 cm⁻¹ (Ref. 4)]. The intensity of this excitation is roughly a factor of 5 smaller than the intensity of the weakest optical phonon. Figure 2 shows that the 130-cm⁻¹ $E_g(\Gamma_3^+)$ Raman mode disappears abruptly for T>30 K, suggesting that this excitation is either screened or strongly damped by thermally excited carriers in the *d* band. Neutron-scattering studies^{15,16} of SmB₆ have also observed this mode at lower energy, E=13 meV (~104 cm⁻¹), and at higher momentum transfer, $|\mathbf{q}|=1.3$ Å^{-1,16} although a symmetry determination of the excitation could not be made with these measurements.

The evolution of a sharp excitation within the optical gap in SmB₆ is suggestive of an impurity level. However, the 130-cm⁻¹ excitation is not consistent with a Wannier-Motttype exciton associated with localized in-gap states, since estimates³ renormalization, of the optical mass $m^*/m_e \sim 1.5$, and the effective dielectric response, $\varepsilon \sim 500$, in SmB₆ imply a binding energy, $E_B = (13.6 \text{ eV})(m^*/$ $\varepsilon^2 m_c$)~1 K, that is too small, and an exciton radius, $r_{\rm ex} = (0.53 \text{ Å})(\varepsilon m_e/m^*) \sim 170 \text{ Å}$, that is much larger than the ~ 2 -Å radial extent of this excitation estimated from neutron-scattering measurements.¹⁶ One possibility that we cannot rule out is that the 130-cm⁻¹ excitation is a Frenkeltype exciton, such as an f-d exciton involving an electron released from the 4f shell that bound to the 4f hole left behind.

R14 310

<u>52</u>

Two particularly notable interpretations are consistent with the symmetry, energy, and temperature dependence of the 130-cm⁻¹ E_g excitation. The first is a crystal-field transition between Γ_7 doublet and Γ_8 quartet levels of the $4f^{5} {}^{6}H_{5/2}$ manifold (Sm³⁺). The E_{g} symmetry of the 130-cm⁻¹ Raman excitation in SmB₆ is indeed consistent with a $\Gamma_7 \rightarrow \Gamma_8$ transition, $\Gamma_7 \otimes \Gamma_8 = E_g \oplus T_{1g} \oplus T_{2g}$ (Γ_3^+ $\oplus \Gamma_4^+ \oplus \Gamma_5^+$), and the 130-cm⁻¹ energy is close to the $\text{Sm}^{3+}({}^{6}H_{5/2})$ Γ_{7} - Γ_{8} energy splitting estimated from crystal-field parameters, $\Delta_{CF} \sim 103 \text{ cm}^{-1}$.¹⁷ Furthermore, while crystal-field excitations generally exhibit a significant temperature dependence only for $T \ge \Delta_{\rm CF}$ (~180 K in SmB₆), the abrupt temperature dependence of the E_g mode in SmB_6 (see Fig. 2) could result from the rapid development of the gap below 70 K, which should substantially reduce f-dhybridization for $\omega < \Delta_c$. It should also be noted that the observation of pure intraionic $4f^5$ transitions is not precluded in configurationally mixed materials such as SmB_6 when the energy transferred to the system is larger than the hybridization energy. Under these circumstances, one expects to probe a static mixture of $4f^6$ and $4f^5$ configurations.¹⁸ Indeed, neutron-scattering studies of SmB₆ report both the $(4f^5)$ $J = \frac{5}{2} \rightarrow J = \frac{7}{2}$ (~1000 cm⁻¹) and $(4f^6) J=0 \rightarrow J=1 \ (\sim 300 \ \text{cm}^{-1})$ intermultiplet transitions at low temperatures.¹⁶ Perhaps the strongest argument against the crystal-field interpretation is that the q dependence of the 130-cm⁻¹ excitation does not follow the singleion 4f form factor, but rather a form factor that betrays some mixture of f- and d-orbital character.¹⁶

A second noteworthy scenario is that the 130-cm⁻¹ $E_g(\Gamma_3^+)$ mode involves an interconfigurational (valenceconserving) transition from the ground singlet state to a bound excited state. The exact nature of such a transition depends upon assumptions about the ground state. One possibility, which presumes that the ground state is partly comprised of a $4f^5$ (${}^{6}H_{5/2}$) state bound to a spin- $\frac{1}{2}$ 5d(e_g) conduction electron in a parallel spin configuration, $4f^{5}5d^{1}$ $({}^{7}H_{2})$, ¹⁹ is that the 130-cm⁻¹ mode involves a spin-flip transition to a $4f^{5}5d^{1}$ state with antiparallel spin alignment $({}^{5}H_{3})$. However, neutron-scattering measurements find that the 130-cm⁻¹ mode has a highly anisotropic **q** dependence,¹⁶ suggesting that this excitation has a d-orbital contribution that is distributed in an extended wave function on the nearest-neighbor Sm sites. An example of such a bound state has been proposed by Kikoin and Mishchenko,⁹ who argue that intermediate-valent SmB_6 has singlet (A_{1g}) ground (Ψ_g) and excited (Ψ_e) states described by $\Psi_{g,e} = |4f^6\rangle \pm |4f^5 \tilde{d}_{\Gamma_7^-}\rangle$, where the second term represents a small-radius excitonic state comprised of a $4f^5$ hole on one Sm site bound to an electron shared in a Γ_7^- -symmetry linear combination of 5d orbitals on the six nearest-neighbor Sm sites, $\bar{d}_{\Gamma_{2}^{-}}$. This model predicts a monopolar (A_{1g}) transition between bonding (Ψ_{a}) and antibonding (Ψ_{a}) configurations, involving a change in both spin and orbital degrees of freedom.

Significantly, the E_g symmetry of the 130-cm⁻¹ excitation rules out a monopolar bound-state transition, but is consistent with a quadrapolar transition from a bound singlet state $(A_{1g}; \hat{J}=0)$ to an E_g symmetry $4f^5\tilde{d}$ bound state $(E_g$

FIG. 3. Filled circles: Temperature dependence of the fractional change in integrated electronic spectral weight below $\Delta_c \sim 290$ cm⁻¹, $\Delta I(T)/\Delta I(T=15 \text{ K})$, where $\Delta I(T)=I(T)-I(340 \text{ K})$, and I(T) is the integrated electronic spectral weight associated with the Raman response function $R''(\omega)$ below $\omega = \Delta_c$. Open squares: Temperature dependence of the integrated E_g mode intensity. Inset: Plot of Δ_c as a function of temperature (filled circles), where Δ_c is the energy below which electronic Raman-scattering intensity in $R''(\omega)$ is suppressed with decreasing temperature compared to the 70-K spectrum (see Fig. 2). For comparison, the E_g mode energy is also plotted as a function of temperature (open squares). The error bars reflect uncertainty in determining Δ_c below 75 cm⁻¹.

 $\in \Gamma_7^- \otimes \Gamma_8^-; J=2$). Several possible orbital configurations of the extended \tilde{d} state are compatible with such a bound state. For example, an E_{o} symmetry $4f^{5}\tilde{d}$ bound state can be constructed from the $\Gamma_7^-(4f^5)$ state on a Sm site bound to an electron in a Γ_8^- symmetry combination of 5d states on the six nearest-neighbor Sm sites. As the spin contribution to the spin- $\frac{1}{2}$ d-electron wave function transforms like Γ_6^+ , the possible orbital configurations of a Γ_8^- symmetry extended state have e_u , t_{1u} , or t_{2u} symmetry $[\Gamma_8^-] \in \Gamma_6^+ \otimes (e_u, t_{1u}, t_{2u})]$. Alternatively, an E_g symmetry $4f^5\vec{d}$ state can involve the Γ_8^- part of the $4f^5$ state bound to a Γ_7^- symmetry combination of 5d states. A Γ_7^- symmetry extended state is consistent with either a_{2u} or t_{2u} symmetry orbital configurations on the six nearest neighbors. The Raman-scattering process associated with this bound-state excitation can occur via a two-step $4f^6 \leftrightarrow 4f^55d$ interconfigurational transition that should be resonant with the $4\bar{f}^6 \rightarrow 4f^55d(t_{2g})$ optical transition.

The relationship between gap formation and the development of the 130-cm⁻¹ is summarized in Fig. 3. The filled circles in the main part of Fig. 3 illustrate, as a function of temperature, the fractional change in the integrated electronic scattering intensity below $\Delta_c \sim 290$ cm^{-1} , $\Delta I(T)/\Delta I(T=15 \text{ K})$, where $\Delta I(T)=I(T)-I(110 \text{ K})$, and $I(T) = \int_{0}^{\Delta_c} R''_{e}(\omega;T) d\omega$ is the integrated spectral weight associated with the electronic contribution to the Ramanscattering response function $R''_e(\omega)$ below $\Delta_c \sim 290 \text{ cm}^{-1}$ at a given temperature T. The open squares compare the integrated intensity of the 130-cm⁻¹ E_g excitation as a function of temperature, showing that it develops rapidly as lowfrequency electronic scattering strength is suppressed by gap formation.

Figures 2 and 3 illustrate several key characteristics of gap development in SmB₆: an abrupt suppression of electronic scattering for (a) temperatures below $T^* \sim 50$ K [roughly the temperature at which the peak in the magnetic susceptibility is observed in SmB_6 (Ref. 19)], and (b) energies less than a temperature-independent energy scale, Δ_c $\sim 8k_BT^*$. Neither of these characteristics is consistent with conventional hybridization gap models in which a temperature-dependent (indirect) gap forms gradually at low temperatures.²⁰ The primary issues raised by these results concern the proper interpretation of Δ_c and the nature of the in-gap states observed in SmB₆. Cooley et al. suggest that the in-gap states observed in SmB₆ are akin to the manybody states that develop below a Mott-Hubbard transition.² Indeed, the doping-induced collapse of the optical gap observed in certain charge-transfer and Mott-Hubbard insulators shares certain similarities with the temperaturedependence of the gap in SmB_6 , including a rapid redistribution of spectral weight across an "isobestic" fixed point and a rapid introduction of states within the gap.²¹ Alternatively, Bucher et al. find that the suppression of lowfrequency optical conductivity below T^* in the Kondo insulator $Ce_3Bi_4Pt_3$ correlates with the quenching of the 4f moment,²² implying that gap formation in this material is more appropriately associated with the formation of local singlets. A similar description provides a consistent interpretation of our SmB_6 results, namely, that the suppression of electronic scattering below T^* (filled circles in Fig. 3) re-

- ¹G. Aeppli and Z. Fisk, Comments Condens. Matter Phys. **16**, 155 (1992).
- ²J. C. Cooley, M. C. Aronson, Z. Fisk, and P. C. Canfield, Phys. Rev. Lett. **74**, 1629 (1995).
- ³G. Travaglini and P. Wachter, Phys. Rev. B 29, 893 (1984).
- ⁴T. Nanba, H. Ohta, M. Motokawa, S. Kimura, S. Kunii, and T. Kasuya, Physica B 186-188, 440 (1993).
- ⁵K. Ueda, M. Sigrist, H. Tsunetsugu, and T. Nishino, Physica B 194-196, 255 (1994).
- ⁶C. M. Varma, Phys. Rev. B 50, 9952 (1994).
- ⁷T. Kasuya, Europhys. Lett. **26**, 277 (1994).
- ⁸T. Kasuya, K. Takegahara, T. Fujita, T. Tanaka, and E. Bannai, J. Phys. (Paris) Colloq. **40**, C5-308 (1979).
- ⁹K. A. Kikoin and A. S. Mishchenko, J. Phys. Condens. Matter 2, 6491 (1990).
- ¹⁰P. Nyhus, S. L. Cooper, and Z. Fisk, Phys. Rev. B **51**, 15 626 (1995).
- ¹¹I. Mörke, V. Dvorak, and P. Wachter, Solid State Commun. 40, 331 (1981).
- ¹²K. A. Kikoin and A. S. Mishchenko, Zh. Éksp. Teor. Fiz. **104**, 3810 (1993) [JETP **77**, 828 (1993)].
- ¹³P. Lemmens, A. Hoffman, A. S. Mischenko, M. Yu. Talantov, and

flects the systematic binding of itinerant *d* electrons into local singlets, while the 130-cm⁻¹ excitation below T^* (open squares in Fig. 3) is a "spin-flip"-type excitation between different bound 4f5d configurations. In this picture, the temperature independence of the gap, $\Delta_c \sim 290 \text{ cm}^{-1}$, in SmB₆ (inset, Fig. 3) is attributable to the temperature independence of the Kondo temperature, $\Delta_c \sim k_B T_K$. It is interesting to note that the results described here for SmB₆ are remarkably similar to those observed in the Kondo insulator Ce₃Bi₄Pt₃, which exhibits a temperature-independent charge gap of $\Delta_c \sim 300 \text{ cm}^{-1}$,²² and a spin gap of $\Delta_s \sim 160 \text{ cm}^{-1}$.²³

In summary, we find that gap development below $T^* \sim 50$ K in SmB₆ is characterized by an abrupt suppression of electronic Raman-scattering intensity below a temperature-independent energy scale $\Delta_c \sim 290$ cm⁻¹, by the presence of a broad spectrum of localized in-gap states with frequency dependence $S(\omega) \sim \omega^2$, and by the appearance of a sharp E_g symmetry excitation near 130 cm⁻¹. The latter is associated with a bound-state excitation formed between a $4f^5$ state and a *d* electron which may occupy an extended state on nearest-neighbor Sm sites.

This work was supported by Grant No. NSF DMR 91-20000 through the STCS (P.N. and S.L.C.) and by the NHMFL through Grant No. NSF DMR 90-16241 (Z.F.). We acknowledge use of the MRL Laser Lab Facility.

G. Güntherodt, Physica B 206&207, 371 (1995).

- ¹⁴I. Frankowski and P. Wachter, Solid State Commun. **41**, 577 (1982).
- ¹⁵E. Holland-Moritz and M. Kasaya, Physica B 136, 424 (1986).
- ¹⁶P. A. Alekseev, Physica B **186-188**, 365 (1993).
- ¹⁷D. B. McWhan, S. M. Shapiro, J. Eckert, M. A. Mook, and R. J. Birgeneau, Phys. Rev. B **18**, 3623 (1978).
- ¹⁸See, for example, P. Wachter, in *Handbook on the Physics and Chemistry of Rare Earths*, edited by K. A. Gschneider, Jr. and L. Eyring (North-Holland, Amsterdam, 1993), Vol. 19, p. 177.
- ¹⁹J. C. Nickerson, R. W. White, K. N. Lee, R. Bacimann, T. H. Geballe, and G. W. Hull, Jr., Phys. Rev. B **3**, 2030 (1971).
- ²⁰C. Sanchez-Castro, K. S. Bedell, and B. R. Cooper, Phys. Rev. B 47, 6879 (1993).
- ²¹S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, and S. Tajima, Phys. Rev. B **43**, 7942 (1991); E. Dagotto, Rev. Mod. Phys. **66**, 763 (1994).
- ²²B. Bucher, Z. Schlesinger, P C. Canfield, and Z. Fisk, Phys. Rev. Lett. 72, 522 (1994).
- ²³A. Severing, J. D. Thompson, P. C. Canfield, Z. Fisk, and P. Riseborough, Phys. Rev. B 44, 6832 (1991).