Light scattering from gap excitations and bound states in $SmB₆$

P. Nyhus and S. L. Cooper

Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801

Z. Fisk and J. Sarrao

Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306 (Received 5 July 1995)

Gap formation and in-gap bound states are investigated in $SmB₆$ using Raman scattering. Below 70 K, we observe an abrupt suppression of electronic scattering below ~ 290 cm⁻¹ that is not consistent with the predicted temperature dependence of a hybridization gap. We also find that gap formation in $SmB₆$ is associated with the appearance of a sharp $E_g(\Gamma_3^+)$ symmetry 130-cm⁻¹ excitation. We discuss several possible interpretations of this excitation, including a Γ_7 - Γ_8 crystal-field transition and a transition between bound $4f^55d$ configurations.

 $SmB₆$ has been suggested to belong to an interesting group of mixed-valence compounds known as Kondo insulators, $¹$ which have high-temperature properties typical</sup> of Kondo metals, including local moment behavior and strong Kondo scattering of carriers, but have the lowtemperature properties of nonmagnetic, small-gap semiconductors $\lceil\Delta \sim 4-14$ meV in SmB₆ (Refs. 2–4)]. There is still substantial debate concerning the nature of the ground and low-lying excited states in the Kondo insulators. One description of these materials is based on the noninteracting $(U=0)$ periodic Anderson model (PAM) at half-filling, which predicts an insulating "hybridization" gap at $T=0$ due to coherent hybridization between the broad $5d$ -6s conduction band and the localized f states. However, Kondo insulators have also been described by the PAM in the large Kondo coupling regime $(J \rightarrow \infty)$, whose ground state is a collection of local singlets, each comprised of a localized spin bound to a conduction electron. Excitations out of this ground state are expected to include spin gap excitations ($\sim \Delta_s$) between singlet and triplet bound-state configurations, and charge gap excitations ($\Delta \ge \Delta_s$) associated with the delocalization of the bound charge.⁵ The importance of charge fluctuations⁶ and the Coulomb interaction⁷ in Kondo insulators has also been stressed. Finally, the ground state of $SmB₆$ has also been associated with other exotic states, such as a Wigner crystal⁸ and a $4f^6 + 4f^5 \tilde{d}$ excitonic state with $A_{1g}(\Gamma_1^+)$ symmetry

As a powerful tool for studying the energy and symmetry of both dipole-allowed and -forbidden excitations, Raman scattering promises to be useful for elucidating the nature of the ground and low-energy excited states of correlation gap insulators. For example, recent studies of FeSi have demonstrated the efficacy of light scattering for studying energygap development in such systems.¹⁰ In this paper, we present a Raman-scattering study of gap formation and in-gap bound states in $SmB₆$.

Raman-scattering measurements were performed on the (100) surfaces of single-crystalline $SmB₆$ prepared from an aluminum flux. The measurements were performed in a variable-temperature He cryostat, using a Spex Triplemate spectrometer equipped with a nitrogen-cooled charge-coupled device array detector. Spectra were obtained with the incident and scattered light polarized in the following configurations in order to identify the symmetries of the excitations studied: $(E_i, E_s) = (x, x), \quad A_{1g} + E_g; \quad (E_i, E_s) = (x, y), \quad T_{2g} + T_{1g};$ $(E_i, E_s) = (x + y, x + y), \quad A_{1g} + \frac{1}{4}E_g + T_{2g}; \quad (E_i, E_s) = (x + y, x + y),$ $(x-y)$, $\frac{3}{4}E_g + T_{1g}$; where \mathbf{E}_i and \mathbf{E}_s are the incident and scattered electric-field polarizations, respectively, x and y are the [100] and [010] crystal directions, respectively, and where $A_{1g}(\Gamma_1^+), E_g(\Gamma_3^+),$ and $T_{2g}/T_{1g}(\Gamma_5^+/\Gamma_4^+)$ are the singly, doubly, and triply degenerate irreducible representations of the SmB₆ space group ($O_h¹-Pm3m$), respectively.

Figure 1 shows the Raman-scattering response function, $R''(\omega) = S(\omega)/[1+n(\omega)]$, of SmB₆ for various temperatures and frequency ranges, where $R''(\omega)$ is obtained from the measured Raman-scattering intensity $S(\omega)$ by dividing out the thermal factor $[1+n(\omega)] = [1-\exp(-\hbar\omega/k_BT)]^{-1}$ The room-temperature, high-frequency Raman response of $SmB₆$ in the inset of Fig. 1 shows the three Raman-active bhonon modes allowed by the O_h^1 - $Pm3m$ space group, a T_{2g} mode at 730 cm⁻¹, an E_g mode at 1148 cm⁻¹, and an A_{1g} mode at 1280 cm⁻¹, all of which were observed previously by Mörke, Dvorak, and Wachter.¹¹ Additionally, the room-temperature Raman spectrum (inset, Fig. 1) exhibits a broad electronic Raman-scattering background that rises linearly at low frequencies with a broad peak near 1200 cm^{-1} , and a defect-induced phonon mode with T_{2g} symmetry near 163 cm^{-1} whose intensity decreases roughly sixfold below 300 K. This "defect-induced" mode in $SmB₆$ was recently attributed to an "extra" vibrational mode induced by nonadiabatic coupling of the lattice to valence fluctuations.¹² A complete examination of the 163 -cm⁻¹ mode in the context of this description is given by Lemmens et al. 13

The low-temperature, low-frequency Raman response of $SmB₆$ is illustrated in the main part of Fig. 1. One of the most dramatic features of the low-temperature Raman response in SmB_6 is an abrupt suppression of electronic scat-

FIG. 1. Comparison of the 70- and 15-K $A_{1g} + E_g + T_{2g}$ symmetry Raman-scattering response functions, $R''(\omega) = S(\omega)/[1]$ $+n(\omega)$, of SmB₆, where $S(\omega)$ is the measured Raman-scattering intensity and $[1+n(\omega)] = [1-\exp(-\hbar\omega/k_BT)]^{-1}$ is the thermal factor. A suppression of electronic Raman scattering below $\Delta_c \sim 290 \text{ cm}^{-1}$, and a redistribution of electronic scattering strength to the energy range $300 \le \omega \le 400$ cm⁻¹, is apparent in SmB₆ due to the development of an energy gap. Also evident in the 15-K spectrum is a sharp E_g symmetry excitation that develops abruptly near 130 cm⁻¹ for $T<$ 45 K. Inset: Room-temperature, highfrequency Raman-scattering response function $R''(\omega)$ for SmB₆, exhibiting optical phonons at 780 cm⁻¹ (T_{2g}) , 1148 cm⁻¹ (E_g) , and 1280 cm⁻¹ (A_{1g}) , and a defect-induced phonon mode at 163 cm^{-1} .

tering below \sim 290 cm⁻¹, and a corresponding enhancement of electronic scattering intensity between 300 and 400 cm^{-1} , reflecting the development of an energy gap in $SmB₆$ for $T<70$ K. A similar redistribution of electronic Raman scattering due to the development of a gap (\sim 780 $cm⁻¹$) was also observed in the correlation gap insulator FeSi.¹⁰ Previous estimates of the gap in SmB_6 were obtained from resistivity $(\Delta \sim 4 \text{ meV})$, 2 optical $(\Delta \sim 4-14 \text{ meV})$, 3,4 and point-contact spectroscopy¹⁴ ($\Delta \sim 5$ meV) measurements. The smallest of these gap values correspond roughly to the frequency below which the low-temperature electronic Raman-scattering intensity goes to zero (see Fig. 1). However, our Raman-scattering results show that energy-gap formation in $SmB₆$ involves a suppression of electronic spectral weight over a substantially larger frequency range,
 $\Delta_c \sim 290 \text{ cm}^{-1}$, than the estimated transport gap, $\Delta_{\text{tr}} \sim 30$ cm⁻¹. Notably, Δ_c is comparable to the maximum energy for which the optical conductivity in $SmB₆$ is suppressed by gap formation, 4 and is close to the onset energy of an optical optical gap. absorption band that has been identified as the (direct)

Figure 1 also shows that the suppression of spectral weight due to gap formation in $SmB₆$ is incomplete below Δ_c , revealing a broad spectrum of in-gap states with a roughly quadratic frequency dependence, $S(\omega) \sim \omega^2$, at low temperatures. A careful polarization study of the gap shows

FIG. 2. The $A_{1g} + E_g + T_{2g}$ symmetry Raman-scattering response function, $R''(\omega) = S(\omega)/(1 + n(\omega))$, of SmB₆ at various temperatures, illustrating (i) the suppression of electronic scattering below $\Delta_c = 290 \text{ cm}^{-1}$ for $T < 70 \text{ K}$ and (ii) the development of the E_g symmetry mode near 130 cm⁻¹ for T<45 K.

no evidence for anisotropy in either Δ_c or the frequency dependence of in-gap states, although the electronic Ramanscattering intensity is strongest in A_{1g} and E_g geometries. Additionally, Fig. 2 illustrates that the energy below which
electronic scattering is suppressed, Δ_c , is essentially independent of temperature once the gap begins to form, and thus represents a fixed energy scale across which spectral weight is systematically redistributed by the developing gap.

The 15-K Raman spectrum (Fig. 1) also reveals that the opening of an energy gap in $SmB₆$ is accompanied by the development of a sharp $E_g(\Gamma_3^+)$ symmetry excitation at 130 $cm⁻¹$ (16 meV), an energy quite close to the optical absorption edge observed in SmB_6 $\sim 120 \text{ cm}^{-1}$ (Ref. 4)]. The intensity of this excitation is roughly a factor of 5 smaller than the intensity of the weakest optical phonon. Figure 2 shows that the 130-cm⁻¹ $E_g(\Gamma_3^+)$ Raman mode disappears abruptly for $T > 30$ K, suggesting that this excitation is either screened or strongly damped by thermally excited carriers in the d band. Neutron-scattering studies^{15,16} of $SmB₆$ have also observed this mode at lower energy, $E=13$ meV (\sim 104 cm⁻¹), and at higher momentum transfer, $|q|=1.3 \text{ Å}^{-1}$,¹⁶ although a symmetry determination of the excitation could not be made with these measurements.

mic not be made with

or-

in SmB₆ is sugg

ral 130-cm⁻¹ excita

ge, type exciton ass

optical estima

gy $m^*/m_e \sim 1.5$, an

by in SmB₆ imply

cal $\epsilon^2 m_e$) ~ 1 K, th
 t -f $r_{ex} = (0.53 \text{ Å})(\epsilon$

the $\sim 2-\text{Å}$ ra The evolution of a sharp excitation within the optical gap in $SmB₆$ is suggestive of an impurity level. However, the 130-cm $^{-1}$ excitation is not consistent with a Wannier-Motttype exciton associated with localized in-gap states, since
optical estimates³ of the mass renormalization, optical estimates³ of the mass renormalization, $m^*/m_e \sim 1.5$, and the effective dielectric response, $\varepsilon \sim 500$, in SmB₆ imply a binding energy, $E_B = (13.6 \text{ eV})(m^*)$ $\varepsilon^2 m_e$) \sim 1 K, that is too small, and an exciton radius, $r_{\text{ex}} = (0.53 \text{ Å})(\epsilon m_e/m^*)$ ~ 170 Å, that is much larger than the \sim 2-Å radial extent of this excitation estimated from neutron-scattering measurements.¹⁶ One possibility that we cannot rule out is that the 130 -cm⁻¹ excitation is a Frenkeltype exciton, such as an $f-d$ exciton involving an electron released from the $4f$ shell that bound to the $4f$ hole left behind.

Two particularly notable interpretations are consistent with the symmetry, energy, and temperature dependence of the 130-cm⁻¹ E_g excitation. The first is a crystal-field transition between Γ_7 doublet and Γ_8 quartet levels of the $4f^5$ $^{6}H_{5/2}$ manifold (Sm³⁺). The E_g symmetry of the 130-cm⁻¹ Raman excitation in SmB_6 is indeed consisten with a $\Gamma_7 \rightarrow \Gamma_8$ transition, $\Gamma_7 \otimes \Gamma_8 = E_g \oplus T_{1g} \oplus T_{2g}$ (Γ_3^+) $\oplus \Gamma_4^+ \oplus \Gamma_5^+$, and the 130-cm⁻¹ energy is close to the $\text{Sm}^{3+}(^{6}H_{5/2})$ Γ_{7} - Γ_{8} energy splitting estimated from crystalfield parameters, $\Delta_{CF} \sim 103$ cm⁻¹.¹⁷ Furthermore, while crystal-field excitations generally exhibit a significant temperature dependence only for $T \ge \Delta_{\text{CF}}$ (~180 K in SmB₆), the abrupt temperature dependence of the E_g mode in SmB_6 (see Fig. 2) could result from the rapid development of the gap below 70 K, which should substantially reduce $f-d$ $SmB₆$ (see Fig. 2) could result from the rapid development of hybridization for $\omega < \Delta_c$. It should also be noted that the observation of pure intraionic $4f⁵$ transitions is not precluded in configurationally mixed materials such as $SmB₆$ when the energy transferred to the system is larger than the hybridization energy. Under these circumstances, one expects to probe a static mixture of $4f^6$ and $4f^5$ configurations.¹⁸ Indeed, neutron-scattering studies of $SmB₆$ report both the $(4f^5)$ $J = \frac{5}{2} \rightarrow J = \frac{7}{2}$ (~ 1000 cm⁻¹) and $(4f^6) J=0 \rightarrow J=1$ $(\sim 300 \text{ cm}^{-1})$ intermultiplet transition at low temperatures.¹⁰ Perhaps the strongest argumen against the crystal-field interpretation is that the q dependence of the 130 -cm⁻¹ excitation does not follow the singleion $4f$ form factor, but rather a form factor that betrays some mixture of f - and d -orbital character.¹⁶

A second noteworthy scenario is that the 130-cm^{-1} $E_g(\Gamma_3^+)$ mode involves an interconfigurational (valenceconserving) transition from the ground singlet state to a bound excited state. The exact nature of such a transition depends upon assumptions about the ground state. One possibility, which presumes that the ground state is partly comprised of a 4 f^5 ($^6H_{5/2}$) state bound to a spin- $\frac{1}{2}$ 5d(e_g) conduction electron in a parallel spin configuration, $4f^55d^1$ $({}^{7}H_2)$, ¹⁹ is that the 130-cm⁻¹ mode involves a spin-flip transition to a $4f^55d^1$ state with antiparallel spin alignment $({}^5H_3)$. However, neutron-scattering measurements find that the 130 -cm⁻¹ mode has a highly anisotropic q dependence, ¹⁶ suggesting that this excitation has a d-orbital contribution that is distributed in an extended wave function on the nearest-neighbor Sm sites. An example of such a bound state has been proposed by Kikoin and Mishchenko,⁹ who argue that intermediate-valent SmB₆ has singlet (A_{1g}) ground (Ψ_g) and excited (Ψ_e) states described by $\Psi_{g,e} = |4f^6\rangle \pm |4f^5 d_{\Gamma_7}$, where the second term represents a small-radius excitonic state comprised of a $4f⁵$ hole on one Sm site bound to an electron shared in a Γ_7^- -symmetry linear combination of 5d orbitals on the six nearest-neighbor Sm sites, $\tilde{d}_{\Gamma_{n}^{-}}$. This model predicts a monopolar (A_{1g}) transition between bonding (Ψ_g) and antibonding (Ψ_e) configurations involving a change in both spin and orbital degrees of freedom.

Significantly, the E_g symmetry of the 130-cm⁻¹ excitation rules out a monopolar bound-state transition, but is consistent with a quadrapolar transition from a bound singlet state $(A_{1g}; \hat{J}=0)$ to an E_g symmetry $4f^5 \tilde{d}$ bound state $(E_g$

FIG. 3. Filled circles: Temperature dependence of the fractional change in integrated electronic spectral weight below $\Delta \sim 290$ cm⁻¹, $\Delta I(T)/\Delta I(T=15 \text{ K})$, where $\Delta I(T) = I(T) - I(340 \text{ K})$, and $I(T)$ is the integrated electronic spectral weight associated with the Raman response function $R''(\omega)$ below $\omega = \Delta_c$. Open squares: Temperature dependence of the integrated E_e mode intensity. Inset: Plot of Δ_c as a function of temperature (filled circles), where Δ_c is the energy below which electronic Raman-scattering intensity in $R''(\omega)$ is suppressed with decreasing temperature compared to the 70-K spectrum (see Fig. 2). For comparison, the E_e mode energy is also plotted as a function of temperature (open squares). The error bars reflect uncertainty in determining Δ_c below 75 cm⁻¹.

 $\epsilon \Gamma_7 \otimes \Gamma_8^-$; $J=2$). Several possible orbital configurations of the extended \tilde{d} state are compatible with such a bound state. For example, an E_g symmetry $4f^5\tilde{d}$ bound state can be constructed from the $\Gamma_7^-(4f^5)$ state on a Sm site bound to an electron in a Γ_8^- symmetry combination of 5*d* states on the six nearest-neighbor Sm sites. As the spin contribution to the spin- $\frac{1}{2}$ d-electron wave function transforms like Γ_6^+ , the possible orbital configurations of a Γ_8^- symmetry exbossible orbital configurations of a I_8 symmetry exercited state have e_u , t_{1u} , or t_{2u} symmetry $[\Gamma_8^-] \in \Gamma_6^+ \otimes (e_u, t_{1u}, t_{2u})]$. Alternatively, an E_g symmetry $4f^5\bar{d}$ state can involve the Γ_8^- par $\frac{1}{7}$ symmetry combination of 5d states. A Γ_7^- symmetry extended state is consistent with either a_{2u} or t_{2u} symmetry orbital configurations on the six nearest neighbors. The Raman-scattering process associated with this bound-state excitation can occur via a two-step $4f^6 \leftrightarrow 4f^55d$ interconfigurational transition that should be resonant with the $4\bar{f}^6 \rightarrow 4f^5 5d(t_{2g})$ optical transition.

The relationship between gap formation and the development of the 130 -cm⁻¹ is summarized in Fig. 3. The filled circles in the main part of Fig. 3 illustrate, as a function of emperature, the fractional change in the integrated electronic
cattering intensity below $\Delta_c \sim 290$ cm⁻¹, scattering intensity below $\Delta_c \sim 290$ cm⁻¹,
 $\Delta I(T)/\Delta I(T= 15 \text{ K})$, where $\Delta I(T) = I(T) - I(110 \text{ K})$, and $I(T) = \int_0^{\Delta_c} R''_e(\omega; T) d\omega$ is the integrated spectral weight associated with the electronic contribution to the Ramanscattering response function $R''_e(\omega)$ below $\Delta_c \sim 290 \text{ cm}^{-1}$ at a given temperature T . The open squares compare the integrated intensity of the 130-cm⁻¹ E_g excitation as a function of temperature, showing that it develops rapidly as lowfrequency electronic scattering strength is suppressed by gap formation.

Figures 2 and 3 illustrate several key characteristics of gap development in SmB_6 : an abrupt suppression of electronic scattering for (a) temperatures below $T^*{\sim}50$ K [roughly the temperature at which the peak in the magnetic susceptibility is observed in $SmB₆$ (Ref. 19)], and (b) energies less than a temperature-independent energy scale, Δ_c \sim 8 $k_B T^*$. Neither of these characteristics is consistent with conventional hybridization gap models in which a temperature-dependent (indirect) gap forms gradually at low temperatures.²⁰ The primary issues raised by these results concern the proper interpretation of Δ_c and the nature of the in-gap states observed in $SmB₆$. Cooley et al. suggest that the in-gap states observed in $SmB₆$ are akin to the manybody states that develop below a Mott-Hubbard transition.² Indeed, the doping-induced collapse of the optical gap observed in certain charge-transfer and Mott-Hubbard insulators shares certain similarities with the temperaturedependence of the gap in $SmB₆$, including a rapid redistribution of spectral weight across an "isobestic" fixed point and a rapid introduction of states within the gap.²¹ Alternatively, Bucher et al. find that the suppression of lowfrequency optical conductivity below T^* in the Kondo insulator $Ce₃Bi₄Pt₃$ correlates with the quenching of the 4f moment, 22 implying that gap formation in this material is more appropriately associated with the formation of local singlets. A similar description provides a consistent interpretation of our $SmB₆$ results, namely, that the suppression of electronic scattering below T^* (filled circles in Fig. 3) re-

- 1 G. Aeppli and Z. Fisk, Comments Condens. Matter Phys. 16, 155 (1992).
- 2 J. C. Cooley, M. C. Aronson, Z. Fisk, and P. C. Canfield, Phys. Rev. Lett. 74, 1629 (1995).
- 3 G. Travaglini and P. Wachter, Phys. Rev. B 29, 893 (1984).
- ⁴T. Nanba, H. Ohta, M. Motokawa, S. Kimura, S. Kunii, and T. Kasuya, Physica B 186-188, 440 (1993).
- 5 K. Ueda, M. Sigrist, H. Tsunetsugu, and T. Nishino, Physica B 194-196, 255 (1994).
- 6 C. M. Varma, Phys. Rev. B 50, 9952 (1994).
- ⁷T. Kasuya, Europhys. Lett. **26**, 277 (1994).
- T. Kasuya, K. Takegahara, T. Fujita, T. Tanaka, and E. Bannai, J. Phys. (Paris) Colloq. 40, C5-308 (1979).
- $9K$. A. Kikoin and A. S. Mishchenko, J. Phys. Condens. Matter 2, 6491 (1990).
- 10 P. Nyhus, S. L. Cooper, and Z. Fisk, Phys. Rev. B 51, 15 626 (1995).
- ¹¹ I. Mörke, V. Dvorak, and P. Wachter, Solid State Commun. 40, 331 (1981).
- 12 K. A. Kikoin and A. S. Mishchenko, Zh. Eksp. Teor. Fiz. 104, 3810 (1993) [JETP 77, 828 (1993)].
- ¹³ P. Lemmens, A. Hoffman, A. S. Mischenko, M. Yu. Talantov, and

flects the systematic binding of itinerant d electrons into local singlets, while the 130-cm⁻¹ excitation below T^* (open squares in Fig. 3) is a "spin-fiip"-type excitation between different bound $4f5d$ configurations. In this picture, the temperature independence of the gap, $\Delta_c \sim 290 \text{ cm}^{-1}$, in SmB₆ (inset, Fig. 3) is attributable to the temperature independence of the Kondo temperature, $\Delta_c \sim k_B T_K$. It is interesting to note that the results described here for $SmB₆$ are remarkably similar to those observed in the Kondo insulator $Ce₃Bi₄Pt₃$, which exhibits a temperature-independent charge gap of $\Delta_c \sim 300 \text{ cm}^{-1}$, 22 and a spin gap of $\Delta_s \sim 160$ cm^{-1} 23

In summary, we find that gap development below T^* ~50 K in SmB₆ is characterized by an abrupt suppression of electronic Raman-scattering intensity below a temperature-independent energy scale $\Delta_c \sim 290$ cm⁻¹, by the presence of a broad spectrum of localized in-gap states with frequency dependence $S(\omega) \sim \omega^2$, and by the appearance of a sharp E_g symmetry excitation near 130 cm⁻¹. The latter is associated with a bound-state excitation formed between a $4f⁵$ state and a d electron which may occupy an extended state on nearest-neighbor Sm sites.

This work was supported by Grant No. NSF DMR 91- 20000 through the STCS (P.N. and S.L.C.) and by the NHMFL through Grant No. NSF DMR 90-16241 (Z.F.). We acknowledge use of the MRL Laser Lab Facility.

G. Güntherodt, Physica B 206&207, 371 (1995).

- ¹⁴I. Frankowski and P. Wachter, Solid State Commun. 41, 577 (1982).
- ¹⁵ E. Holland-Moritz and M. Kasaya, Physica B 136, 424 (1986).
- ¹⁶P. A. Alekseev, Physica B **186-188**, 365 (1993).
- 17 D. B. McWhan, S. M. Shapiro, J. Eckert, M. A. Mook, and R. J. Birgeneau, Phys. Rev. 8 18, 3623 (1978).
- ¹⁸ See, for example, P. Wachter, in Handbook on the Physics and Chemistry of Rare Earths, edited by K. A. Gschneider, Jr. and L. Eyring (North-Holland, Amsterdam, 1993), Vol. 19, p. 177.
- ¹⁹J. C. Nickerson, R. W. White, K. N. Lee, R. Bacimann, T. H. Geballe, and G. W. Hull, Jr., Phys. Rev. 8 3, 2030 (1971).
- 20 C. Sanchez-Castro, K. S. Bedell, and B. R. Cooper, Phys. Rev. B 47, 6879 (1993).
- 21 S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, and S. Tajima, Phys. Rev. B 43, 7942 (1991); E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
- ²² B. Bucher, Z. Schlesinger, P C. Canfield, and Z. Fisk, Phys. Rev. Lett. 72, 522 (1994).
- A. Severing, J. D. Thompson, P. C. Canfield, Z. Fisk, and P. Riseborough, Phys. Rev. 8 44, 6832 (1991).