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Composite-fermion effective masses
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Fractional quantum-Hall-effect features around filling factor v= 2 have been analyzed using the composite-
fermion approach. Effective masses deduced from the temperature dependence of the Shubnikov —de Haas

(SdH) oscillations, in agreement with other measurements, show a divergence as the fiiling factor approaches
v= z and scale as (density) U . The magnetic-field dependence of the amplitude is explained quantitatively in

terms of normal impurity scattering and a strong dephasing term associated with density inhomogeneities of
order 0.5%. It is pointed out that assumptions made in the derivation of the standard theory used to analyze
SdH oscillations are less likely to be satisfied for composite fermions and that some caution should therefore
be used in interpreting effective-mass results obtained in this way.

Recently several grou s have used the composite-
fermion (CF) approach ' to analyze fractional quantum-
Hall-effect (FQHE) data. In contrast to the hierarchical
model this provides a natural explanation for the strength as
well as the position of the FQHE features in terms of
Landau-level quantization around even denominator filling
factors, in particular around v=-,'. The FQHE energy gaps
are then given by the Landau-level spacing fi ~,
=efiB*/m " where B*=B B / is th—e deviation of the
field from the v= —,

' value and m is the composite-fermion
effective mass. For electrons the measured values of m are
significantly larger than the conventional value (0.067mo)
for GaAs and, as predicted, ' scale approximately as B
According to gauge arguments the effective mass should
diverge logarithmically for B*~0: for two-dimensional
electron gases (2DEG's) (Ref. 1 and 4) and 2D holes strong
divergences have been observed, but in another set of 2DEG
samples with similar mobilities, no divergence was visible.
Because this phenomena appears sensitive to the disorder in
the samples we have investigated it in 2DEG material of
different provenance but comparable mobility and present
the results here.

The normal Shubnikov —de Haas (SdH) oscillations occur
because the conductivity (o. „) depends on the density of
states at the Fermi energy g(EF), both through the number
of carriers and through the scattering rate. In 2D systems, in
contrast to the 3D case, o. is just proportional to

[g(EF)] and the amplitude of the oscillations is then given,
for the fundamental component, by

b, p„=4 po [XT/sinh(Xr) ]exp( —m/ co, ~ ),

where po is the zero-field resistivity, the term involving

X& describes the thermal damping, and 7q is the quantum
lifetime characterizing the disorder. The disorder can also be
expressed in terms of a Dingle temperature TD
=A/(2mk~7q) or a quantum mobility p, =e7. /m~. In the
thermal damping term Xr=27r k~T/fito, is proportional to
m* and experimental values of m* are obtained by fitting the
temperature dependence of the amplitude. It should be noted,
however, that two assumptions made in deriving Eq. (1) are
not necessarily valid for composite fermions. First, the ther-

TABLE I. Sample parameters.

Sample Density Mobility
(10" cm ) (10 cm /V s)

Quantum mobility (p,q)
(10 cm /V s)

A

B
1.27
1.39

3.5 0.25
0.23

mal damping term is derived assuming all Landau levels (or
at least those within a few kit T of the Fermi energy) have the
same shape. The damping then becomes a function only of
the ratio k&T/&to, with the Landau-level shape reflected in
the strength of the various harmonics (k), each of which is
damped by a factor kXT/sinh(kXT). Experimental results ob-
tained in a series of high-mobility samples show deviations
from this expression that are attributed to extra structure in
the density of states, at the Fermi level, with an energy scale
of order &co, .

Second, the term describing the disorder assumes an ex-
plicit shape for the Landau levels, Lorentzian (or equiva-
lently Gaussian with a width proportional to B / ).The decay
term is essentially the Fourier transform of the Landau-level
shape and for different shapes the amplitude will have a dif-
ferent dependence on magnetic field. One example is the
potential fIuctuations produced by density inhomogeneities.
These are particularly important in composite-fermion sys-
tems because small variations in density (typically 1%) pro-
duce corresponding variations in 8 but variations in B~
that are, proportionally, an order of magnitude larger. The
effect of these can be treated using the technique of phase
smearing whereby the reduction in the amplitude of the
oscillations is determined by an integration over the spread
of phases caused by the density variations.

The two samples used were grown at the National Re-
search Council (NRC). " Both had 1200-A spacer layers, two
delta-doped layers separated by 810 A, a further 100 A of
Al Gai As and a 120-A GaAs cap. Sample parameters,
after illumination with a red light-emitting diode, are given
in Table I. The differences between the samples are attri-
buted to a slightly higher p-type background doping in

sample 8 associated with a small amount of Be contamina-
tion. Quantum mobilities quoted in Table I come from low-
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FIG. 1. Overview of composite-ferrnion fractions around v= 2

in sample A at a temperature of 50 mK.

temperature Dingle plots (T=50 mK) which had the correct
prefactor [4pz in Eq. (1)].At higher temperatures, because
the thermal damping term in Eq. (1) can be incorrect, Dingle
plots had incorrect intercepts at 1/B = 0 and gave erroneous
values of p,

Figure 1 shows the FQHE features around p= —,
' in sample

A; very similar results are seen in sample B. Composite-
fermion effective-mass plots for sample A are shown in Fig.
2. Effective masses m are obtained from the slope of
In(b, p~B*/T) plotted against T where the factor
f=1—exp( —2Xz), which is usually close to 1, depends
weakly on m "but can be evaluated reiteratively. In all cases
a good fit to the data was obtained with only small deviations
from the expected, linear, behavior. Results are shown in Fig.
3, with error bars that reAect not only statistical errors but
also any systematic deviations. The dashed and solid lines
show data from Refs. l and 4 scaled by the square root of the
density' and the agreement between these sets of data, for
densities varying by a factor of over 2, confirms the
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FIG. 3. Composite-fermion effective masses (in units of the
free-electron mass m&&) measured in samples A (solid) and B
(open). The curves are data from Ref. 1 (dotted) and Ref. 4 (solid)
scaled by the square root of the density.

predicted ' variation of m " as B . The results obtained
here clearly confirm a divergence of m " for B*—+0.

Figure 4 shows a composite-fermion Dingle plot for
sample A. The logarithm of the amplitude of the oscillations
at T=O, taken from the intercepts in Fig. 2, are plotted
against nm "/B* where u=2ir ks/eA. If the composite-
fermion model is valid and transport can be described by
standard theory [Eq. (1)] the intercept at UB*=0 should be
given by 4p~, i.e., four times the resistivity at v= 2. A linear
fit, constrained to pass through this point, and through the
points with the largest values of B*, gives a value of
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FIG. 2. Composite-fermion effective-mass plots for sample A;
the effective mass is proportional to the slope of the lines. The
factor f (=1) is defined in the text.

FIG. 4. Dingle plot for composite-fermion amplitudes in sample
A. Open symbols denote 8*~0, solid symbols B*~O. The solid
line, through the point 4po, corresponds to a Dingle temperature
of 0.24 K, i.e., vq=5. 1 ps. The dashed line is a fit assuming a
Gaussian density distribution with a RMS spread of 0.45%.
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r "=5.1 ps, which corresponds to a Landau-level width

(full width 21'c"=6/r ") of 1.5 K. For these fractions
activation energies were also measured, and when plotted
against 8* show the linear dependence observed in other
samples. ' ' The negative intercept at 8*=0 is conven-
tionally interpreted as the Landau-level width. In this case
the value 3.1 K is a factor of 2 larger than the width obtained
from the Dingle plot. This discrepancy is not unexpected: a
well-defined activation plot, with exponential decay over
one or more decades, measures the width of the gap in the
density of states so the negative intercept in the plot of
activation energies against 8* is a measure of the width at
the base of the Landau levels, where the density of states
goes to zero. By contrast the quantum lifetime extracted
from a Dingle plot corresponds to the width at approximately
half maximum and, as expected, this is found to be about
half the width at the base of the Landau levels. This inter-
pretation of these two sets of data differs somewhat from
other results in the literature but the results from sample 8
are very similar, and we also note that if the data in Ref. 4
are analyzed in the same way, i.e., using a linear fit con-
strained to go through the point 4po and preferentially
weighted towards the larger values of B*, then the value of

in that sample is about 7 ps, corresponding to a width at
half maximum of 1.1 K. This is also approximately half the
width given by the negative intercept (2.1 K) of the activa-
tion energies for that sample.

For the higher fractions, i.e., smaller values of B in Fig.
4, there are deviations from the linear Dingle plot similar to
those seen in other experiments. ' If these are interpreted in
terms of a field-dependent quantum lifetime the scattering
rate (1/r ") diverges as B*~0, but as noted above, the func-
tional form used in Eq. (1) to describe the disorder in terms
of a quantum lifetime may well not be correct and some
other form of Landau-level shape should probably be consid-
ered. In particular, the phase smearing produced by density
variations is likely to be very important for composite fermi-
ons and will certainly have a different functional form.

If the phase of the SdH oscillations is written as
27rF/B, where the frequency F=nb/e (with n the density),
then following Shoenberg, ' for a field variation 68 the de-
parture in phase from the standard value is given by
$=2mFbB/B2. If the distribution of phases is given by
D(P/k) the corresponding amplitude reduction is given by
f(X)/f(0), where f(X.) is the Fourier transform of D with

respect to P, and assuming a Gaussian spread in density the
amplitude decays as exp( —A. /2). For composite fermions
X=2mFP/B*, where P represents the equivalent field
variation caused by density variations. The dotted curve in
Fig. 4 shows a fit to the data using a combination of conven-
tional scattering and phase smearing with a root-mean-square
(RMS) density variation of 0.45%. It should be noted that the
rather fast falloff, as 8*, is characteristic of composite
fermions. For normal but inhomogeneous systems, a slower
falloff, as 8, is expected and observed' and, indeed, the
low-field Dingle plot, which is linear within experimental
error down to fields of less than 0.04 T, implies a RMS
density variation of less than 0.3%. The difference between
these two values may just reflect details of the density dis-
tribution and differences in screening. Alternatively, it may

reflect some additional source of phase smearing present for
composite fermions but not as low fields. The most obvious
possibility is fluctuations in the "cancellation" magnetic
field produced by the two flux quanta attached to each elec-
tron. Although the mean value of this field just cancels the
external applied magnetic field at p=-,', variations about this
mean value are to be expected.

There are other possible explanations for the deviations
from linearity in the Dingle plot, such as modification to the
Landau-level density of states associated with the formation
of gaps, but whatever their source the deviations show that
the broadening of the composite-fermion Landau levels is
not Lorentzian over this field range and that the standard
expression for the scattering given in Eq. (1) is not correct
for small 8*.

Similar considerations may also apply to effective-mass
measurements, if only because the divergences occur over
the same field range. Values of m "are obtained from the
temperature dependence because raising the temperature
causes the tails of the Fermi function to sample Landau lev-
els away from Fermi energy. At high temperatures the energy
scale is hen, but at low temperatures this process will be
dominated by contributions from the Landau levels closest to
the Fermi level and will depend as much on the shape of the
Landau level as on the spacing. If the shape of the Landau
levels has no energy dependence then Eq. (1) is valid for the
fundamental; if there is an energy dependence the apparent
measured value of m~ will not be given by eB/co, and in-

deed, deviations attributed to this effect (although in the op-
posite sense to the divergence observed here) have been
observed near B= 0. Even when Eq. (1) is valid there is the
experimental problem of separating the fundamental from
other harmonics, or at least ensuring they do not contaminate
the measurement. This is conventionally done by harmonic
analysis of the oscillations as a function of magnetic field but
what is required is the harmonic content as a function of
energy. We know the energy spacing of the Landau levels is
a function of magnetic field (because there is a divergence in
m ") so it is quite likely these two will not be the same. It
can be seen therefore that there are several pitfalls involved
in using Eq. (1) to determine composite-fermion effective
masses and this suggests caution should be used when inter-

preting the results of such measurements, particularly for v
1near

In summary, analysis of FQHE features in two-high-
mobility 2DEG s using a composite-fermion formalism
shows that the oscillation amplitudes exhibit the conven-
tional temperature dependence. Measured effective masses
are found to diverge for v~-,' and for different samples the
values of m " scale as (density) t as expected. Measure-
ments of the composite-fermion Landau-level broadening are
generally in good quantitative agreement with other mea-
surements, and while the field dependence of the amplitude
of the composite-fermion oscillations agrees with standard
SdH theory for large B~, this is not so for fractions closer to
v= ~. The anomalous behavior is explained quantitively by a
RMS density variation of 0.45%. It is pointed out that sev-
eral assumptions made in deriving the standard theoretical
expression for the amplitude of SdH oscillations may very
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well not be valid for composite fermions and that caution
should therefore be used when interpreting results of mea-
surements made in composite-fermion systems using this
formalism.
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