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Magnetic short-range order versus long-range order in the Hubbard model
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A theory of magnetic short-range order in the paraphase of the one-band Hubbard model is presented on the

basis of the four-field slave-boson approach. In the functional-integral scheme the bosonized action, expressed
in terms of fluctuating local magnetizations and internal magnetic fields, is transformed to an effective Ising
model treated in the Bethe-cluster approximation. The theory is evaluated in the saddle-point approximation
including short-range-order effects in a fully self-consistent way. Comparing our results with previous ap-

proaches, the ground-state phase diagram shows the suppression of antiferromagnetic and incommensurate

spiral long-range-ordered phases in the favor of a paraphase with short-range order in a wide doping region.
Using realistic values of the on-site Coulomb repulsion for La2 „Sr Cu04, U/t=8, the critical doping con-
centration for the destruction of antiferromagnetism is obtained as 3—4 %, in agreement with experiments.

The unconventional magnetic properties of high-T, super-
conductors in the normal state, such as the pronounced an-

tiferromagnetic (AFM) spin correlations probed by neutron

scattering and NMR, as well as the maximum in the mag-
netic susceptibility of La2 „Sr„Cu04 as a function of doping
and temperature, are ascribed to strong Coulomb correla-
tions within the Cu02 planes. In the slightly doped cuprates,
the strong on-site correlation on the Cu sites is believed to
result in a considerable AFM short-range order ' (SRO)
which decreases with increasing doping and temperature.

The role played by SRO in explaining the normal-state

magnetic susceptibility was investigated on the basis of a
slave-boson coherent potential approximation (CPA) ap-
proach to the three-band Hubbard model. This theory is self-
consistent only at the single-site level and does not hold at

very low temperatures. Thus, an improved treatment of SRO
in the paraphase of itinerant correlation models, which is
valid also at T=O, is highly desirable. Since the essential
features of magnetic correlations in the Cu02 plane may be
described by effective one-band models, ' it is worthwhile to
attack the problem of SRO within the two-dimensional (2D)
Hubbard model. In spite of the numerous analytical ap-
proaches to the description of spin correlations in the Hub-
bard model, there are only a ft'.w methods designed for the
investigation of SRO. For example, in previous Hubbard-
Stratonovich/CPA theories, the free-energy functional can be
transformed to an effective Ising model, ' where the SRO is
treated in the Bethe-cluster approximation. At T= 0, how-
ever, those theories reduce to the Hartree-Fock approxima-
tion in both the weak- and strong-coupling limits and there-
fore neglect important correlations. On the other hand, in the
scalar' and spin-rotation-invariant slave-boson (SB) ap-
proaches, an appreciable part of the correlations is taken into
account at the saddle point. At this level of approximation,
the SB results for local observables, quasiparticle band
renorrnalization, and ground-state energy' of various mag-
netically ordered phases agree surprisingly well with exact
diagonalization and quantum Monte Carlo (QMC) (Ref.

17) data. However, as yet all previous SB theories do not
take into consideration SRO effects.

In this paper we present a theory of magnetic SRO based
on the scalar four-field SB approach to the one-band Hub-
bard model. The basis feature of our theory is the self-
consistent inclusion of SRO in the saddle-point solution.
Therefore, we expect to obtain qualitatively new results con-
cerning the stability of magnetic long-range order (LRO)
versus SRO, the problem of phase separation, and the doping
dependence of the spin susceptibility. Here, we focus on the
description of SRO in the paraphase at T= 0 as a function of
doping and on the magnetic phase diagram.

We start from the Kotliar-Ruckenstein SB representation
of the Hubbard model

M=+ t;,zt ft f;~, +Up dtd;.

In the functional-integral representation of the partition func-
tion, the constraints etc;+ d~d;+ X p~ p; = 1 and

f; f;~=pt p; + dtd; are enforced by the Lagrange multipli-

ers X, and X, , respectively. Integrating out the pseudo-
fermionic fields (f; ) and using the radial gauge and the

static approximation for the Bose fields [p;, d;, and XI l,
where the e; fields are eliminated by the saddle-point ap-
proximation for )i.; (Ref. 11)],we get

[Wd] [Wd *][Wn] [Wv] [Wm ][Wg]

X exp( —P%'((d, d*,n, v, m, g))],

'qi=g (Ud,*d; n;v;+m;g;)—

+ — deaf(co —p, )Im Tr ln[ —G," (to)],
'7T J

EJ 0'
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where

QP
—v;+ Crt;

Izio-I

m, =g ~p,'. ,

n; =g p; + 2d,.*d;, v; = 2 g li I

(4)

(6)

of all SB fields and has to be determined self-consistently at
each interaction strength U and hole doping 8=1—n. Per-
forming the s; sum in the partition function with the func-
tional (7) we treat the SRO in the Bethe-cluster approxima-
tion, i.e., only nearest-neighbor correlations are taken into
account. Only just now, we adopt the saddle-point approxi-
mation for all Bose fields (m, g, n, v, d). Then we obtain the
free-energy functional,

1f= —(4 In[cosh(PJ)] —(8 J o
—1)ln 2j+ pn,

where

W((s;)) =W —Jg s;s, ,
(Ei)

(7)

9"=——g In[1+exp( —P[(z ) ek+ v —p, ])]
k

+N Ud' nv+mg—+g (4,+4,„+4,„), (8)

(9)

In (8), the single-site fiuctuation contribution is given by

14„= ~ dcuf(cu —p, ) —Im In[1 —GOV ], (10)

with y;= o.s;= ~. The two-site contributions

couple fluctuations between nearest-neighbor pairs and are
responsible for SRO effects. Here, T~= V~(1 —G V~)

' is
0'

the scattering matrix, and G (G ) denotes the diagonal
(off-diagonal) components of G, . Let us emphasize that the
effective Ising-exchange integral J is a complicated function

Here, m; (n;) is the bosonic representation of the local mag-
netization (particle number) defined analogously to its fermi-
onic counterpart. Since (; couples to m; as a magnetic field,
we denote g; by "internal magnetic field. " The inverse
propagator (4) is introduced by the modified Shiba
transformation of G,; (~)=[~—v;+erg;]&;, —&;*~, t;, ,
which is exact under the trace and removes the nondiagonal
randomness in the transfer term. Note that z; is a function of
the fields n;, m;, and d;; z denotes the uniform paramag-
netic (PM) saddle-point value.

To incorporate the SRO, one has to go beyond the PM
saddle point. To this end, we perform an expansion
in terms of the perturbation V; 8;j= —G j +G j, where

G,j is the PM saddle-point propagator. We describe the
fluctuations of the local magnetizations m; and the internal
magnetic fields (; by the ansatz m; = ms; and

(;=(s; (s;= ~) and assume n;=n, v;= v, and

d;=d, =d. Then we transform the free-energy functional
W to an effective Ising model along the lines indicated by
Kakehashi. In the nearest-neighbor pair approximation, W
takes the form

(12)

which has to be minimized with respect to the Bose fields,
yielding a coupled system of self-consistency equations. Cor-
respondingly, our theory incorporates SRO at the saddle
point in a fully self-consistent way at the pair approximation
level. For vanishing local magnetization, m=0, we have
V„=O and [by (9) and (11)]J=O so that there is no SRO,
and the PM saddle point is recovered. Accordingly, we
have two possible paraphases defined by

PM: (s;)=0, (s;s,)=0; m=0 (J=O),

SRO-PM: (s;)=0, (s;s;)40; m~0 (J+0), (13)

where i and j are nearest-neighbor sites. At T=O, the
paraphase with antiferromagnetic (ferromagnetic) SRO has
to be distinguished from the corresponding LRO phases,
which are denoted by AFM (FM): (s;)= —(sj)=1, (s;s,)
= —1, J&0 ((s;)= (s,) = 1, (s;sj) = 1, J)0). In the AFM
phase there is a Pni te sublat tice magnetization

(mz =pz &

—
p„&= —ms) obtained from the A -B saddle-point2 2

solution. ' Of course, the local-magnetization amplitude
m of the SRO-PM phase differs from mz, in particular, we
found m 4 0 in parameter regions, where mz = 0 (see below,
Fig. 2). Let us further stress that the characteristics of J
have to be contrasted from the effective Ising-exchange
energy J occurring in previous Hubbard-Stratonovich/CPA

approaches, ' where J couples thermally induced local mo-
ments and is finite also in the paraphase without SRO.

In Fig. 1 the ground-state energies of various phases are
plotted as functions of 8 at U/t=8, where the 2D tight-
binding unperturbed density of states is used. For compari-
son, we have also depicted the results obtained by the spin-
rotation-invariant SB saddle- oint solution for
incommensurate spiral LRO states' and by exact diagonal-
izations on a 4 X4 lattice. Most notably, in the doping re-
gion 0.045~ 8~0.21 the ground-state energy of the
SRO-PM phase is lower than that of the spiral phases and,
moreover, lies very close to the exact data. At very small and
higher dopings, where the (1,1) and (1,m.) spirals become the
ground state, respectively, our PM-SRO solution behaves
less favorably. We suggest that the inclusion of spiral SRO
within a spin-rotation-invariant SB theory may further im-
prove the results in both doping regions.

Next, let us discuss the stability of the PM, SRO-PM, and
AFM phases in more detail. As shown in Fig. 1, for U/t = 8
we obtain an AFM=SRO-PM phase transition of first order
at the critical hole doping 8', =0.04 and a SRO-PM=PM
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FIG. 1. Ground-state energies of the 2D Hubbard model as func-
tions of doping at U/t=8. The energy of the SRO-PM phase is
compared with SB (Ref. 13) and exact diagonalization (ED) (Ref.
16) results.

transition of second order at 6, =0.26. We would like to

point out that in the SRO-PM phase the energy is a convex
function of the particle density, so that this phase is locally
stable against phase separation. There is much controversy
about the problem of phase separation in the Hubbard model,
as well as in cuprate superconductors. ' Whereas exact
diagonalization' (see Fig. 1) and QMC studies' do not
yield evidence of phase separation, in mean-field-like
theories ' ' the lowest-energy state has a negative com-
pressibility over a wide doping region (8~0.15; see also Fig.
1). In contrast, our SRO-PM state has a positive compress-
ibility also at very low dopings (8~ 8, =0.04). For
h'~8, , both the AFM and (1,1) spiral phases are locally

unstable. Correspondingly, the existence of phase separation
for 8—+0 remains an open problem. However, from our re-
sults we argue that an extended SRO theory which, e.g.,
includes a longer than nearest-neighbor ranged SRO may
yield a convex energy for all 6.

Having established the quality of our method, in Fig. 2 the
ground-state phase diagram is mapped out, where for nu-
merical simplification we have used a semielliptic unper-
turbed density of states. Note that for U/t=8, the critical
dopings at the phase transitions, 6', =0.03 and 6, =0.23,
nearly coincide with those given above. At large enough U/t
ratios, the LRO is strongly suppressed in favor of SRO. For
values of U/t being realistic for high-T, cuprates [U/t=8
(Ref. 8)], the AFM phase is destroyed at the critical hole
doping 8', =0.03, which agrees with the experimentally ob-

FIG. 2. Ground-state phase diagram of the Hubbard model,
where AFM, PM, and SRO-PM denote the antiferromagnetic LRO
phase, the paraphase without SRO, and the paraphase with SRO,
respectively. The dotted line marks the well-known AFM=PM
transition (Refs. 2, 14,22) which is suppressed by the SRO-PM
phase. The effective antiferrornagnetic exchange interaction

(J(0) is shown in the inset.

served value in Laz Sr Cu04. Thus, the rapid disappear-
ance of antiferromagnetism in high-T, cuprates at very low
hole dopings may be related to the persistence of a pro-
nounced SRO in the paraphase. Obviously, the stability re-

gion of the SRO-PM phase at U/t=8, 0.03~ 8~0.23,
nearly coincides with the doping regime of Laz Sr Cu04
compounds, where, above T, , the so-called "strange metal"
phase occurs. Correspondingly, the unconventional normal-
state behavior of high-T, cuprates may be due to the pres-
ence of a considerable degree of SRO. The effective Ising-

exchange integral J(8,U), shown in the inset of Fig. 2, is
intimately related to the existence of SRO and reflects the
interplay of local and itinerant magnetic behavior. With de-

creasing magnetic correlations, i.e., with increasing 8' and

decreasing U/t,
~
J~ decreases, as expected.

To conclude, the main result of our theory concerning the
ground-state properties of the Hubbard model is that the
magnetic LRO phases make way to a paraphase with SRO in
a wide doping region. This SRO-PM phase is locally stable
against phase separation. Besides the advantage of our
method to treat the SRO at T=O (contrary to CPA-based
schemes ' ' ), the self-consistent incorporation of SRO at the
saddle point gives a conceptually clear starting point for the
consideration of Gaussian fluctuations around the saddle
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point with SRO. Although those results are interesting in
themselves, we emphasize that the concept of SRO in strong-
correlation models may give a clue to a better understanding
of the unconventional normal-state properties of high-T,
compounds. In particular, the SRO effects on the uniform
static susceptibility have to be explored, where a maximum

in the doping dependence, as observed in La2 Sr Cu04, is
expected. This will be left for further study.

This work was performed under the auspices of Deutsche
Forschungsgemeinschaft under Project No. SF-HTSL-SRO.
U.T. acknowledges the hospitality at the University of
Bayreuth.

A. P. Kampf, Phys. Rep. 249, 219 (1994).
J. Rossat-Mignod et al. , Physica B 186-18$, 1 (1993).
C. Berthier et al. , Physica C 235-240, 67 (1994).
J. B. Torrance et al. , Phys. Rev. B 40, 8872 (1989).
F. Mila, Phys. Rev. B 42, 2677 (1990).
G. Baumgartel, J. Schmalian, and K. H. Benemann, Europhys.

Lett. 24, 601 (1993).
P. ~.Anderson, Science 235, 1196 (1987).
M. S. Hybertsen, E. B. Stecel, M. Schliiter, and D. R. Jennison,

Phys. Rev. B 41, 11 068 (1990).
Y. Kakehashi, J. Phys. Soc. Jpn. 50, 1505 (1981).
H. Fehske, E. Kolley, and W. Kolley, Phys. Status Solidi B 123,
553 (1984).

"H. Hasegawa, J. Phys. Condens. Matter 1, 9325 (1989).
G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57, 1362
(1986).

R. Fresard and P. WolAe, J. Phys. Condens. Matter 4, 3625
(1992).

L. Lilly, A. Muramatsu, and W. Hanke, Phys. Rev. Lett. 65, 1379
(1990).

M. Deeg, H. Fehske, and H. Buttner, Europhys. Lett. 26, 109
(1994).

E. Dagotto et al. , Phys. Rev. B 45, 10 741 (1992).
A. Moreo, D. J. Scalapino, and E. Dagotto, Phys. Rev. B 43,

11 442 (1991).
sH. Shiba, Prog. Theor. Phys. 46, 77 (1971).

V. J. Emery, S. A. Kivelson, and H. Q. Lin, Phys. Rev. Lett. 64,
475 (1990).

20A. Auerbach and B. E. Larson, Phys. Rev. B 43, 7800 (1991).
Phase Separation in Cuprate Superconductors, edited by E. Sig-

mund and K. A. Miiller (Springer, Berlin, 1994).
M. Deeg, H. Fehske, and H. Biittner, Z. Phys. B 88, 283 (1992).
A. N. Andriotis, E. N. Economou, Q. Lin, and C. M. Soukoulis,

Phys. Rev. B 47, 9208 (1993).
A. P. Kampf, Phys. Rev. B 44, 2637 (1991).


