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of the cubic-to-tetragonal transition
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Based on the experimental observation of cubic-to-tetragonal iiansition of low-carbon martensite, we
perform a long-wavelength approximation for the stress-induced elastic interaction in the theory of mi-

croscopic elasticity. Taking into account the elastic anisotropy and the tetragonal character of the octa-
hedral interstices in a-iron, we consistently obtain the cubic-to-tetragonal transition of first-order nature
at the carbon concentration of 0.18 wt%, using the order-disorder transition theory formulated by
Khachaturyan with the method of static concentration waves. The detailed variation of the lattice pa-
rameters and axial ratio is also given compatibly with our results. The difFerence in experimental results
between single crystals and polycrystals is emphasized, and a phenomenological two-dimensional inter-
nal strain is proposed to explain the transition in thin-plate samples. The results are in good agreement
with experimental observations.

I. INTRODUCTION

It was found' and later confirmed ' long ago that, for
plain carbon steels and even alloyed steels, 5 the lattice
parameters of the body-centered tetragonal martensite
are determined by the carbon content of the initial
austenite as

and

a =ao —Pp,
c =ao+ap,

(1.1a)

(1.1b)

c/a =1+yp, (l. lc)

where ao is the bcc a-iron lattice parameter, p the weight
percent of carbon, and

and

a=0. 116+0.002 A, P=O 013%0 00.2 A.

y =0.046+0.001 . (1.2)

This concentration dependence of the lattice parameters
is one of the most important experimental proofs of the
facts that martensite is a supersaturated solid solution of
carbon in a-iron, and that the mechanism of the transfor-
mation is a diffusionless homogeneous deformation '

from fcc y-austenite, such that the carbon atoms, occu-
pying the octahedral interstitial sites of the y lattice, fall
into only the 0, sublattice of the a-iron. The a lattice
has three octahedral interstitial sublattices 0, O~, and
O„displaced from the origin by the vectors
h i

= ( —,', 0,0),hz = (0, —,', 0), and h3 = (0,0, —,
' ), respectively.

If carbon atoms occupy the three sublattices uniformly,

the resulting lattice is cubic. The preferential occupation
of one of the three sublattices can be viewed as an or-
dered distribution of carbon atoms in them. This leads to
the tetragonality of the resulting lattice. Later experi-
ments at abnormally low ' and high' ' axial ratio
c/a and determination of its variation in freshly formed
and subsequently heated martensites have revealed that
the ordered distribution is a thermodynamically more
stable state than the disordered one, instead of merely an
effect of a diffusionless transformation. The neutron
diffraction results, ' on the other hand, indicate that the
normal axial ratio, Eq. (1.1c), corresponds to an only par-
tially order d state, i.e., only about 80% of carbon atoms
occupy the 0, sublattice. The abnormal cases and their
variation with temperature arise from the nonequilibrium
distribution of carbon atoms in as-quenched martensites.

Theoretic lly, Zener suggested in 1946 that the or-
dered distribution resulted from stress-induced interac-
tion of the carbon atoms. Thus there exists a critical car-
bon concentration (or temperature) at a definite tempera-
ture (or concentration) above (or below) which ordering
appears because the resulting reduction in elastic energy
dominates the decrease in entropy, hence leading to a de-
crease, instead of an increase, ' in free energy; this is the
basic mechanism of phase transitions. Accordingly, he
found the cubic-tetragonal transition occurred at about
0.6 wt% carbon at room temperature. Taking into ac-
count the discrete structure of the crystal lattice and elas-
tic anisotropy as well as the fact that each interstitial
atom is a center of tetragonal deformation, Kurdjumov
and Khachaturyan later used a self-consistent theory of
the order-disorder transition with static concentration
waves and microscopic elasticity theory to obtain a
similar result. However, the experimental results of par-
tially rather than completely ordered distribution of car-
bon atoms led to considerably higher values of the distor-
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tion of the iron lattice and hence concentration
coefiicients of linear expansion u,j(p). Consequently, they
revised their calculation of elastic interaction energy, re-
ducing the critical carbon concentration for ordering at
room temperature to 0.18 wt%. ' This value is in
better agreement with the fact that carbon martensite
with a cubic lattice had not been experimentally ob-
served until the work of Liu et al. (hereafter referred
to as I).

Utilizing thin-foil samples to release internal stresses,
we have experimentally observed cubic martensites in I.
A transition from a cubic to a tetragonal lattice near 0.2
wt % carbon has also been confirmed by the variation of
the [200] peak of x-ray diffraction. These results led to
the present careful reexamination of the previous theories
of the order-disorder transition of carbon atoms in mar-
tensite. We arrive at a similar critical carbon concentra-
tion of 0.18 wt%, by using a long-wavelength approxi-
mation to the stress-induced interaction to account for
the low concentration of carbon, thus removing several
inconsistencies in the previous theories (Sec. III}. We
also give detailed theoretical curves of the lattice parame-
ters versus carbon concentration from zero, since Eqs.
(1.1) are obtained only from high concentrations, and the
usual extrapolation erroneously excludes cubic marten-
site.

We review briefly the previous theories in Sec. II to
collect the relevant formula, and then present a detailed
analysis in Sec. III. Section IV contains a phenomenolog-
ical theory for comparison with experiment. Section V
concludes with a discussion.

II. REVIEW OF THE THEORIES

ik. -R

, (p, R)= —,
' g [y (j, )u (k,p)e ' +c.c.],

Js

(2.2b)

g Wq(R —R')u (k, q, R')=A, (k)u (k,p, R),
q, R'

or in Fourier transform
3

V~q(k)v (k, q)=A, (k)u (k,p), o =1,2, 3,
q=1

where

V„(k)= y W„(R)e'"" .

(2.3)

(2.4)

(2.5)

since V~~(k} is a Hermitian matrix, all the eigenvalues
A, (k) are real and their eigenvectors u (k, q) form an
orthonormal and complete set of functions.

The equilibrium distribution can be found self-
consistently by noting that each lattice site of the three
sublattices can only be occupied by one or zero of the
atoms of some definite type. Accordingly,

where C is the atomic concentration of carbon atoms, j,
runs over the vectors of the star s, z, is the long-range
order parameter, and y (j, ) a coefficient determining the
superlattice symmetry with respect to rotation and
reQection.

The static concentration waves can be chosen as the
eigenvectors of the pairwise interaction matrix W (R)
characterizing the interaction of two atoms at the p and q
interstices in two unit cells separated by R, i.e.,

We shall briefly review the theories of order-disorder
transitions and microelasticity and the relations between
lattice parameters and carbon concentration, following
the method formulated by Khachaturyan and Sha-
talov.

n(p, R}= exp —P p —g W (R—R')
q, R'

Xn (q, R') '+1

A. Order-disorder transition

The distribution of carbon atoms in the three sublat-
tices of interstices can be viewed as the arrangement of a
binary substitutional solution of carbon atoms and vacan-
cies, and is described by the occupation probability
n (p, R ) of finding an atom at an interstice r =R+h,
where R are the coordinates of the unit cell and p =1, 2,
and 3 represents the three sublattices. The atomic struc-
ture can be further represented as a linear superposition
of the static concentration waves

(2.6)

where p= 1 /k' T, p is the chemical potential determined
by the total number of interstitial atoms, and kz is the
Boltzmann constant. The solution n (p, R) of this equa-
tion provides the extrema of the Helmholtz free energy

Wz (R—R')n (p, R)n (q, R')
p, q R,R'

+k~T g [n(p, R) ln[n(p, R)]
p, R

u (k,p, R)=u (k,p)e'" (2.1) + [ 1 n (p, R)] ln—[ 1 n (p, R)]J —. (2.7)

where k is the wave vector, o. the polarization number,
and v (k,p) is a unit polarization vector characterizing
the contribution of a concentration wave (o,k) to the
atomic distribution in the pth sublattice. Thus

By linearizing Eq. (2.6) at C/3 corresponding to the
disordered cubic state, the ordering temperature of the
most stable high-temperature ordered phase can be ob-
tained as

n(p, R)=—+ gz, s, (p, R),C

Cr, s
(2.2a) T =—

C

C
3k~

1 ——A, (k ),C
00 $0

(2.8)

where A, (k, ) is the absolute minimum of all A, (k). Ac-
0 0
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cordingly, the structure of the ordered phase can be ob-
tained based on the star s0 and the polarization o 0.

This distortion transforms the bcc host lattice into the or-
thorhombic one with unit translations

B. Stress-induced yairwise interaction matrix

The stress-induced interaction of two atoms has been
formulated in Ref. 24 and in Refs. 25 and 26, which
give

a =ap[1+u 11( n2+n3)+ u33ni]

b =ap[1+u ii(ni+n3)+u33n2]

c =ap[1+u 11( 1+ 2)+u33n31

(2.14a)

(2.14b)

(2.14c)

V (k)= '
v p ~ij k!uij (p )u kl ( q }+Q„

—F;(p, k)G; (k)F~(q, k)+Q for k&0 (2.9b)
III. LONG-WAVELENGTH THEORY

with

Q =—g F,(p, k}G; (k)F'(q, k) .=1
k

(2.10)

C. Relations between lattice yarameters and carbon
concentration

Here A, ,jki is the elastic modulus tensor, vp the atomic
volume equal to ap /2 for the bcc lattice, with ap the iron
lattice parameter, & is the total number of iron atoms,
and F, (p, k) is the Fourier transform of the Kanzaki
force f;(p, R—R'), with which the solute atom (p, R)
acts on a host atom at site R' of the undistorted host lat-
tice G;j.(k) is the Green's tensor that is the inverse of the
dynamic matrix determining the vibrational frequency
spectrum of a crystal. Repeated subscripts always imply
summation unless otherwise indicated. Thus it is clear
that V (k) is the interaction between two solute atoms
mediated by the lattice displacement.

A. Theory

In the previous calculation of ordering, ' ' one used
the nearest- and next-nearest-neighbor, i.e., short-range,
interactions directly to obtain V~~(k). This obviously
contradicts the results corresponding to a dilute solution.
For a carbon concentration of, say, 1 at. %%uoor0.22wt %,
there is, on average, only one carbon atom among 50 unit
cells. Thus it is clear that the interaction should be cal-
culated in the long-range limit. Another omission in the
previous theories is the p and q dependence of Q. Al-
though crystallographically the three sublattices are
equivalent, the interaction between two atoms with p =q
and pAq is obviously difFerent, owing to the tetragonal
symmetry of the octahedral interstices. A correct calcu-
lation should therefore be based on the continuum limit
of Vzz(k), or specifically Fi and G; . This has been per-
formed in Ref. 30 in the case of an isotropic medium.

By keeping the first nonvanishing terms of the Taylor
expansions and replacing the summation over N points of
the first Brillouin zone by an integration over a sphere
with equal volume (21r) /vp, one has

n1 +n2+n3 C (2.11)

To relate the theory to the experimentally observed
dependence of the lattice parameters on carbon concen-
tration, assume that the occupation fractions of the inter-
stices 0, O~, and 0, are n1, n2, and n3, respectively,
with

L~, (n)—:F, (p, k)G,, (k)F,'(q, k)

vPcr;1(P—)niQ;j(n)nko k(q),

Q„=«„( )&,

V, (k) = —L,(n)+ (L,(n) ),

(3.1)

(3.2)

(3.3)

The resulting crystal lattice distortion is

u; =u; (l)ni+u; (1)n2+u;j(1)n3 . (2.12}

0
u33 0 0

u (1)= 0 u„O
0 0 u11

u;j. (2)= 0 u 33 0 (2.13)

0 0 u11
0

u11 0 0

u;j(3)= 0 u „0
0 0 u33

The tetragonal uniform strains produced by the insertion
of interstitial atoms are

with

~ij (P ) ~ijklukl (P }

Q~J (n) A J/lnkn[

(3.4)

(3.5)

1111
—~2222 —k3333 =C11

~1122 ~1133 2233 C12

~1212 ~1313 ~2323 44

we have, from Eq. (3.5),

0,, '(n) =C44+ ( Ci, —C~ )n;

A,j '(n) =(C,2+C~)n;n

Hence the inverse components are

(3.6a)

(3.6b)

(3.6c)

(3.7a)

(3.7b)

where the average is over all directions of the vector
n=k//k/.

For a cubic medium,
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10;;(n)= [C +(C„—C )(n +nk)
c44D (n)

+g(C„+C,2}n nk], (3.8a)

o 1 I ( 11 +C12 )u 11 +C12+ 33
p p p

0 33 2C(2u )) +C$'ju 33
p p p

(3.14a)

(3.14b)

Q,.i(n) = — (C,2+ C44)(1+ ink )n; nj,1

c~D n)

with

D(n)=C» +(C» +C, 2)g(n, nz +nzn 3+n 3n, )

+g (Ci, +2C12+C~)n in2n3,

and

(3.8b)

(3.9)

Having determined the elastic interaction matrix, we
can then find its eigenvalues and associated eigenvectors.
Note that, since we are concerned only with the long-
wavelength approximation, k=0 is the only Lifshitz
point which can result in a nonaccidental stable ordered
phase. At k=0 the matrix V (0) always has, by symme-
try, the form

g=(C„—C,2
—2C44)/C (3.10)

where the indices i, j, and k form a cyclic sequence [sum-
mation over the repeated indices is not implied in Eqs.
(3.7) and (3.8), which have also been obtained in Ref. 30
in a different context, though with some misprints. ] Note
that /=0 corresponds to an isotropic medium. There-
fore, from Eqs. (3.2) and (3.4), we reach

Q =vo g o;;(p)(n, Q, , (n)n, )cr,, (q)

Vi2(o}

Vp (0)= Vi2(0) Vi i (0) Vi2(0)

V12(0) V12(0) Vi 1 (0)

and has two different eigenvalues

A, ,(0}=Vii(0)+2V, 2(0)

uo(C11+ 2C12 )(2u 11+u 33 ) +Qi i +2Q12

(3.15)

+vo g o,, (p)( n, Q; (n)nj )o,j(q),
lAJ

(3.11)

and

(3.16a)

Qii ="o

or specifically

(oo )2+2(oo )2

Up

4o o +2(o )
g2

A,2(0) = V, 1 (0)—V12(0)

" (Cii C12)(" ll "33 } +Qii Q12

(3 12 )
corresponding to the eigenvectors

Qi2=vo
2o 33o.„+(o. )

Up

1

( 0)2+2 0 0+3( 0)2
g2 (3.12b)

u, (p, O)=(u, (1,0),vi(2, 0),u, (3,0))= (1,1, 1)
1

3

(3.17a)

q, =([C44.+(Ci, —C~)(n, +n2)

+g(Cii+Ci2)n in2]D(n}),

q2 = ((C,2+ CD)(1+gn 3 )n in 2/D (n) )

(3.13a)

(3.13b)

u2(p, O}= ( —1, —1,2),1

v3(p, o) = (1,—1,0),1

2

(3.17b)

respectively, the last two being degenerate. From Eqs.
(2.2), we have generally, for k=O,

C—+zy, u, (p, O) for o =1
C = 3

n(p, R)=—+ gz y u (p, O)=
+z2Y2v2(p 0)+z31 3v3(p, O) for o =2, 3

3

(3.18)

Therefore only A,2(0) is associated with ordering: A, ,(0)
corresponds to a disordered state with carbon atoms po-
pulating the three interstitial sublattices equally. Ac-
cording to Eq. (2.8), ordering occurs only when

A,2(0) (A, i(0). We will see in Sec. III that this is not the
case in Ref. 27, although the authors obtained ordering
below 0.2 wt%%uo carbon at room temperature. Their nu-
merical results would have had A, i(0) (A,2(0) so that no
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1~T
CA,2(0) ln[( 1+2z) /(1 —z) ]

(3.20)

and

F(T, C,z)= 'NC Ai(0)+—Nk~TC ln —+ ,'NC Az(0—)z
C

ordering would have occurred, had they consistently con-
sidered A, i(0) as emphasized in Ref. 30.

Cxenerally, from Eq. (3.18), the ordered state has three
difFerent values of n (p, R), so that there are two long-
range order parameters, consistent with the criterion for
n(p, R) being the solution of Eq. (2.6). Thus the or-
dered state will be orthorhombic. As we are concerned
here only with tetragonal martensite, we will only consid-
er, for simplicity, a. =2, as in Ref. 27. cr =3 leads to a
continuous transition to an orthorhombic phase at the
temperature determined by Eq. (2.8), which is lower than
the first-order transition temperature of 0 =2.

Substituting Eq. (3.17b) into Eq. (3.18), we obtain the
distributions

—(1—z) for p =1 and 2
C
3

n(p, R)= '
C (3.19)—( 1+2z) for p =3,

where we have chosen yz =~6C/3 so that the complete-
ly ordered state has z =1. Applying this result to Eqs.
(2.6) and (2.7), we get, after some manipulations, the
dependence of the order parameter on temperature and
concentration and the free energy, respectively, as

B. Numerical results

Cii =2.335X10" N/rn, Ciz=1.355X10" N/m2,
(3.24)

C~ = 1.18X 10" N /m

As in Ref. 27, we assume that Eqs. (1.1) result from only
80% instead of 100% of carbon atoms occupying the 0,
sublattice. From Eq. (3.19), n3=0. 8C corresponds to an
equilibrium order parameter z =0.7. Equating Eqs.
(3.23a) and (3.23b) to Eqs. (1.1a) and (l.lb), respectively,
with z =0.7, we obtain

u )i = —0.235 and u33 1.143, (3.25)

slightly different from Ref. 27 due to their different a0
value.

To get the eigenvalues A, i(0) and A2(0), we need to
evaluate the directional average Eqs. (3.13). As
n = ( sin 8 cosy, sin 8 sing&, cos8) and

(.)= f' isn8d8 f' dq
4m 0 0

q &
and q2 can be numerically integrated to be

Equations (3.9), (3.10), (3.12)—(3.14), (3.16), and
(3.19)—(3.23) are the main formulas of the long-
wavelength theory. In order to have quantitative results,
we need to know the elastic constants C», C,2, and C~,
and a0, u», and u 33 We use0 0 29

a0=2. 8664 A

and

+ 3Nks TC [(1+2z)ln(1+2z}

+2(1—z) ln(1 —z)],

q, =0.342 and q2=0. 100 .

Consequently Eqs. (3.12) give

Q» =6.755 eV and Qi2=1.724 eV .

(3.21) Thus Eqs. (3.16) lead to

(3.2b)

(3.27)

in the limit of dilute solution, C «1. These results can
be cross-checked by noting that Eq. (3.20}gives the extre-
ma of Eq. (3.21). The transition temperature, or concen-
tration, instead of Eq. (2.8) with o.0=2, the unstable

point, is attained froin Eq. (3.20) and
F(T,C,z)=F(T, C, O), or

k~T
CA, 2(0)

z2

(1+2z) ln(1+2z)+2(1 —z}ln(1 —z)

(3.22)

c =ao[1+—,'C(2u„+u33)+ —', Cz(u33 u ii)],
c/a =1+Cz(u33 —u» )

for C«1.

(3.23a)

(3.23b)

(3.23c)

Finally the lattice parameters and the axial ratio can be
obtained from Eqs. (2.14) and (3.19) as

a =b =ao[1+—,'C(2u»+u33) —
—,'Cz(u33 u]i)]

A, ,(0)=—6.605 eV and A,2(0)= —8.659 eV . (3.28)

Clearly, A,z(0) &A, ,(0). In Ref. 27, however, Q =Q5
and the interaction of the first few neighbors gives
Q=5.37 eV. This in turn leads to Ai(0)= —11.44 eV
and A,z(0}=—8.32 eV. The slight differences between
our u» and u 33 and theirs cannot change the fact that in
this case A,z(0) ) A, ,(0), so that no ordering could actually
occur in their theory. In Ref. 30, chemical contact repul-
sion due to overlap of electronic shells was taken into ac-
count to remove this discrepancy. Consequently, a criti-
cal concentration of 0.03 wt% was obtained. Such a low
concentration, however, obviously cannot justify the
short-range contact interaction.

Equation (3.20} leads to the variation of order parame-
ter with the reduced parameter ~= —kiiT/Ck, z(0), as
shown in Fig. 1. The point ~, =—,', z~0 corresponds to
T, defined in Eq. (2.8) for C « 1. This point is associated
with the instability of the disordered phase. By equating
Eq. (3.20} to (3.22) to find the equilibrium order parame-
ter z0=0. 500 at the transition point, the equilibrium
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FIG. 1. Lattice parameters vs carbon content. Solid lines are
theoretical lines, dotted ones are unphysical extrapolations.
Circles are experimental points. Numbers indicate slopes. The
inset shows the low-carbon-content portion of the figure.

phase boundary ( To, Co) can be obtained from Eq. (3.20)
to be

k~ To =0.361&r, .
Cok~ 0

(3.29)

Thus at the transition point there is a discontinuous jurnp
of the order parameter from 0 to 0.500. The equilibrium
relation, consequently, is the solid line in Fig. 1; the
dashed one corresponds to the metastable and unstable
states. Therefore the critical carbon concentration for
the transition from cubically disordered to tetragonally
ordered state at room temperature To =300 K is

Co =0.000 592 To =0. 1 8 wt % (3.30)

IV. CGMPARISGN %'ITH EXPERIMENT

The theory above explains rather well the well-k'nown
relation between the lattice parameters and carbon con-
tent. It is based, however, on a stress-induced interaction
that is derived without subjecting the material to external
stress. Thus it can only apply to single crystals and
powder samples, where internal stress can readily relax.
For polycrystalline samples, the martensitic transforma-
tional strain and intergrain coordination will produce
constraints on the elastic response of the medium, leading
to deviation from the simple relation Eqs. (1.1). This is
probably the main reason, in addition to the resolution of

At room temperature To, the dependence of order pa-
rameter on concentration is given by Eq. (3.20). For
C (Co, z =0. Substituting these results into Eqs. (3.23),
we obtain the variation of lattice parameters with carbon
content, as also shown in Fig. 1, where the dashed lines
also correspond to metastable and unstable states. At
C=CO, there are discontinuous jumps of a and c too.
Note that the variation of a and c above Co with C also
involves the variation of order parameter from zo to 1.
For z =0.7, a, P and y=0.0450 from Eqs. (3.23) are, of
course, in agreement with Eq. (1.2).

b,e=b, e(z, C) .

Accordingly the lattice parameters a and b become

a =b =ao[l+ —,'C(2u &&+u33)——,'Cz(u33 u]f )

+he(z, C)] .

(4.1)

(4.2)

Suppose that hc, is small, so that it can be expanded in its
variables to the lowest order

Ac= Az+BC, (4.3)

where A and B are coefficients. This is reasonable as the
higher z and C the larger the additional distortion, and
hence the constant term is zero. Noting that hc always
counteracts the deformation of the a-b plane, we take B
to be proportional to the change of a or b, or specifically

he= Az BC [(2u ))+u33)——z(u33 —u „)], (4.4)

where we have made rearrangements of A and B in Eq.
(4.3) to different ones with the same symbols. Thus

a =b =ao[1+ Az+( —,
' —&)C(2u )( + u 33 )

( ' 8)Cz ( u—33
———u i g ) ]3

(4.5)

early experimental techniques, for the scatter in the ex-
perimental data along the line of Eqs. (1.1), as seen in the
figure, for example, in Ref. 6. In fact, internal stress,
arising from subsequent disordering and relating to the
conjugation of the martensite and austenite lattices, has
been invoked to explain why cubic rnartensite has not
been observed: It will qualitatively destroy the order-
disorder transition by stabilizing the initial completely
ordered state, which is assumed to have minimum elastic
energy. This result, however, was obtained before the
discovery of the fact that the freshly formed martensite in
plain carbon steels is in a partly disordered state, and
thus is questionable.

In our experiment, the samples used are thin (0.6 mm),
compared to about 20 rnm in the other two directions.
Thus the internal stress in the direction perpendicular to
the plate can readily relax. When ordering occurs, it is
consequently favorable for the carbon atoms to line up in
this direction, to be taken as the c axis. The a-b plane, on
the other hand, is constrained so that it cannot complete-
ly follow the stress-free deformation. Thus, for a cubic
martensite with low carbon content, the dilation of the
lattice with addition of carbon atoms is constrained to
counteract this effect, leading to a lower slope (0.02) as
compared with the theoretical one (0.03). For the tetrag-
onal martensite, on the other hand, the same e6'ect
reduces the contraction of the lattice to give a higher
slope ( —0.012) as compared with the theoretical value—0.013. This is quite reasonable albeit it is within the
experimental error. Also the constraint causes an up-
ward shift in the a axis.

As a quantitative explanation, we assume that a homo-
geneous additional internal strain exists in the a-b plane
that is a function of the order parameter z and carbon
concentration C, i.e.,
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b,E=—'NA, (ha) =—'NA, (A' z —2A'B'Cz+B' C )

(4.6a)

where

A A +B(Q 33
—u „)C

B'=B(2ui, +uqq),

(4.6b)

(4.6c)

and A, is a characteristic elastic energy. The total free en-
ergy is thus changed from Eq. (3.21) to

The additional internal strain gives rise to an addition-
al elastic energy
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F'(T, C,z)=F(T, C,z)+b,E . (4.7)

Accordingly, the equilibrium order parameter satisfies, by
setting the first derivative of F' to zero,

FIG. 2. Order parameter vs carbon content. Solid curves
correspond to Eq. (4.8) and dotted ones to Eq. (4.9). The
characteristic elastic energy X is, from left to right, 0, 0.01, 0.1,
0.33, and 1 eV.

C ~ (())+ 3XA + 3XA'B'
C Ck 7, 1

1+2z
2

3A, A'
C Az(0)+ z +3k, A'B'zC

=Ckii T [( 1+ 2z) ln(1+ 2z) +2(1—z)ln(1 —z) j .

(4.9)

There are three parameters in the theory. A and B can
be determined by fitting Eq. (4.5) to the experimental re-
sults. Suppose the ordered state also corresponds to an
80% occupation of the 0, sublattice, i.e., z =0.7. After
the split of the f200) peak for p&0. 56 wt% a is given
experimentally by

a =2.8716—0.012p .

Accordingly, from Eq. (3.25),

A =0.0026 and B =0.028 .

(4.10)

(4.11)

As an estimate of A, , we adopt the value of Ref. 22,
which is 0.33 eV, although their additional strain is as-
sumed to be proportional to C(1 —z). This value is ob-
tained by supposing that the accommodation of the
austenite and martensite lattices is accomplished by
means of (112)M twinning.

With these parameters, Eqs. (4.8) and (4.9) can be
solved numerically. The results are shown in Fig. 2,
where the curves with A, varying from 0 to 1 eV are also
given for comparison. We note that as B always appears
with C, a small concentration in the dilute case, as in Eq.
(4.6b}, it can be neglected compared with A. It is seen
that the curves shift to a higher concentration as A, in-
creases. However, this shift is quite small. Roughly, for
A, )0. 1, there is a small nonzero order parameter even
when p is smaller than the transition point, the intersec-

(4.8)

which returns to Eq. (3.20) when A =B =0. The corre-
sponding relation to Eq. (3.22) is

tion point of Eqs. (4.8) and (4.9). This residual order pa-
rameter results from the internal-stressed-induced tetra-
gonality. Nevertheless, even for A, =l eV, the charac-
teristic elastic energy UOE, where E is a typical elastic
constant, the ordering still persists due to the elastic in-
teraction of the carbon atoms. This explains the experi-
mental observation of the cubic-to-tetragonal transition.
Lattice parameters are attained with the same procedures
as previously and also shown in Fig. 1. The tetragonal
axis c shifts slightly to a higher concentration; its slope,
however, remains identical. Experimental points are also
shown in the figure. The agreement with experiment is
readily appreciated. It is worth mentioning that for low
carbon content there is a slight tetragonality, with the
slope of the a-C line being reduced from 0.030 to 0.028.
We can, of course, choose B to compromise between the
slopes of low high concentration, so that the low concen-
tration one can be closer to the experimental value, 0.02.
This, however, is trivial, as the experimental error for the
low carbon content is larger, and self-tempering may also
have an effect.

Figure 3 shows the dependence of the axial ratio on

carbon concentration, both theoretically and experimen-

tally. The axial ratio exhibits a reduction of 0.002 from

1, though with the same slope. This reduction results

from the internal strain due to the accommodation of
rnartensite and martensite or rnartensite and austenite.

In carbon-free martensites, a reduction of similar magni-

tude (0.0025) has also been found, ~ which is also as-

sumed to come from strain relaxation.

V. DISCUSSION

Though the tetragonality of ferrous rnartensites has
long been established, there is still no consensus ' as to
whether it is an intrinsic transformation e8'ect (conse-
quence of the Bain distortion} or is the outcome of ther-
rnodynamic ordering. We note, as pointed out in the In-
troduction, that lowering of configurational entropy due
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FIG. 3. Axial ratio vs carbon content. The lines and symbols
have the same meaning as in Fig. 1.

to ordering cannot rule out the appearance of a thermo-
dynamically ordered state. The main argument against
the thermodynamic viewpoint, in our opinion, is that cu-
bic martensite has never been observed. Tetragonal
martensite has been detected as carbon concentration as
low as 0.2 wt%%uo. A small axial ratio, on the other hand,
has been observed during decomposition of high-carbon
martensite up to tempering temperatures of 200 C and
even up to 500 C in alloyed steels. ' This is, however,
not unexpected, since martensite is a metastable product.
Solid-solution decomposition, the long-wavelength con-
centration fluctuations of carbon atoms, for instance,
occurs at temperatures near 100'C and even at room
temperature. Therefore it should be noted that the equi-
librium used in the theory above is only relative; and the
theory developed here concerns only the distribution of
carbon atoms in the as-quenched state, where carbon
atoms can be reasonably well approximated as uniformly
distributed in the lattice as in the high-temperature disor-
dered austenite. In I, cubic martensites have been ob-
served only by varying the carbon content, instead of the
temperature in the samples, and a transition to tetragonal
martensite has also been observed accordingly. Taking
into account the phenomena of abnormally high and low
axial ratios discussed in Sec. I, we thus conclude that the
tetragonality is thermodynamic in origin.

Developing a long-wavelength theory to account for
the low carbon concentration near the transition, taking
into account consistently the tetragonality of the distor-
tion of the octahedral interstitials [u;z(p)] and the tetra-
gonality of the stress-induced interaction (through Q~~),
we give a quantitative explanation of the transition and a
detailed description of the resulting variation of the lat-
tice parameters with respect to the carbon content, thus
removing the apparent contradictions in the previous
theories between the low content of carbon atoms and the
short-range or even contact interaction among them.
The transition is first order at the carbon concentration

of 0.18 wt%%uo at room temperature (300 K), with a discon-
tinuous jump of order parameter of 0.50. Consequently,
the lattice parameters and axial ratio also change abrupt-
ly at the transition point. We also address the difference
in the measured lattice parameters and axial ratio be-
tween single-crystalline and polycrystalline samples, and
accordingly we propose a phenom enological internal
strain proportional to the order parameter and the car-
bon content, which gives an excellent fit to the experi-
mental results and a qualitatively correct prediction for
the reduction in slope of the a-C line in the cubic phase,
but keeps the transition almost unchanged.

We have included in the theory the experimental out-
come that only 80% of carbon atoms occupy the 0,
interstice in freshly formed martensite in plain carbon
steels. A question arises naturally: Why only 80%%uo? We
suggest that this is due to the stability of the host iron lat-
tice with respect to the distortion resulting from the dis-
tribution of carbon atoms. In the theory of ordering con-
sidered here, only the interaction of carbon atoms is con-
sidered; the host lattice is assumed to withstand totally
all the distortions. This is, of course, not always possible.
Therefore some types of internal structural adjustment
should take place. Theoretically, it is possible, at least in
principle, to take into account the deformation of the
host lattice to predict the stable range beyond which
some adjustments occur. Experimentally, it has been
found that fresh martensites of Al and high-Ni carbon
steels with abnormally high tetragonality have a platelike
morphology with complete internal twinning, while nor-
mal or low-tetragonal martensites are mainly dislocated,
so that carbon atoms are driven out by the strain field of
the dislocations. We propose that this difference in mor-
phology results from the self-accommodation of the host
lattice to sustain the distortion of carbon distribution,
and the abnormally high and low tetragonalities come
from the stabilizing and unstabilizing effects of the al-
loyed elements on the lattice. It should be pointed out
that this adjustment of the host lattice differs from the or-
dered transition of its interstitials: the basic structure
remains intact. Experimental evidence is that the
Mossbauer spectra remain unchanged after aging at 200
K, whereas the axial ratio diminishes remarkably.
Another example is the mechanism of the additional
(011)~ twin proposed to find carbon atoms in the other
two sublattices.

As the ordering of low-concentration interstitials has
been observed in a number of interstitial solutions, we be-
lieve that many relevant phenomena can be explained by
the theory developed in this paper, namely, the long-
wavelength theory with due account of the internal stress
and the distortion of the host lattice.
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