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Critical region of the nematic-isotropic phase transition in the epsilon expansion
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The phase transition from isotropic liquid to nematic liquid crystal is a weak first-order one. We in-

vestigate the possibility of the critical region at the first-order transition line of the nematic-isotropic
phase transition in the context of epsilon (c) expansion. We also investigate how the Landau —de Gennes
theory of the nematic-isotropic phase transition may break down at a first-order transition. When the
nematic-isotropic transition temperature Tzl is inside a critical region, we find that the critical indices of
the absolute stability limit of the nematic phase are P, =P (critical index of the critical point) and
a, =)'i = l —P.

I. INTRODUCTION

The nematic-isotropic (N I) pha-se transition has been a
topic of active theoretical and experimental studies over
the past few decades. Although the N-I transition is one
of the most ubiquitous found in nature, it is also one of
the least understood. The phase transition from isotropic
liquid to nematic liquid crystal is a weak first-order one.
As a rule, it is characterized by a small latent heat and by
large pretransitional anomalies in a relatively wide tem-
perature region, similar to those observed near a second-
order transition. Appreciable pretransition phenomena
indicate that the transition is close to being second order.
It has been concluded' that an isolated point exists, by
extrapolating the experimental dependence of the specific
volume discontinuity on the temperature and pressure.
There exists an appreciable region in which the Auctua-
tions become important and Landau theory is not appli-
cable. Below one can calculate the critical indices of the
transition to the isotropic phase by the methods of ex-
panding in a=4 —d (Ref. 2) and in l/n The N. Itransi--
tion is the simplest and the most studied of all phase tran-
sitions in liquid crystals. Therefore, it is surprising that
until now there are no clear answers to some key ques-
tions concerning the nature of this phenomenon. First, it
is not quite clear what makes this transition so weakly
first order. A generally accepted description of the X-I
transition is based on the Landau —de Gennes phenome-
nological theory ' with the nematic order Auctuation
corrections in the Gaussian approximation. de Gennes
was the first to put forward the question of the validity of
the mean-field approach to such systems with short-range
interaction.

The concept of critical phenomena at a phase transi-
tion has been used only for the case of a second-order
transition. However, in several papers it was claimed
that a critical behavior had been observed at the N-I
phase transition (at a first order). The basis for this claim
is the fact that one can determine a critical index P for
the order parameter Q. Since the Landau theory has
been applied to second-order transition ' as well as to
first-order transition, one can define, at a first-order tran-

sition, a critical region in which the classical theories
break down. Landau theory may no longer be valid if the
N-I transition temperature T&1 is near a critical point.
We can look for its critical region using the Ginzburg cri-
terion and verify whether T~l is or is not inside it.
Hence, in the free-energy expression with the cubic
coefficient of the order parameter Q, one cannot extract
the critical region, unless the cubic coeKcient becomes
zero. The work presented here was initiated in the hope
that the c expansion might shed some light on this prob-
lem. We have studied the possibility of the critical region
using epsilon (e) expansion. We noticed that the critical
region is obtained near about the first-order X-I phase
transition line. We have also calculated the scaling equa-
tion of state in this region.

In Sec. II we give a brief review of the Landau —de
Gennes model. A new calculation of the real behavior of
the system of the failure of the Landau theory appears in
Sec. III. In Sec. IV we determine the critical region of
the X-I transition in the context of epsilon expansion.
We calculate in Sec. V the equation of state of the N-I
transition. Finally, Sec. VI discusses some conclusions of
our results.

II. LANDAU —DE GENNKS MODEL

In order to explain the critical behavior of the X-I
transition in the neighborhood of the critical point, we
resort to the c expansion, and calculate to first order in
c, =4—d, where d is the dimensionality of the system in
space. We have followed the same method '
throughout this paper. The particular form used here fol-
lows. "'

For purely geometrical reasons, the %-I transition is
first order, as was recognized by Landau. The
Landau —de Gennes model' containing a cubic term in
order parameter in the free-energy expansion was pro-
posed and used to describe first-order transition in liquid
crystals. Retaining only terms which have rotational in-
variance, the free-energy per unit volume, V is given by

V= Vo+ ,' AQJQJ; ——32BQ;—Qjkgk;+ ~, C(g; Q, ; )
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Here Vo is the free-energy density of the isotropic phase,
Q; is the tensor order parameter which describes the de-
gree of order in a nematic liquid crystal, and a summa-
tion over repeated indices is implied. The coe%cient A is
assumed to have the form A = a ( T T'—), where "a" is a
positive constant and T* is the temperature of the abso-
lute stability limit of the isotropic phase, while 8 and C
are regarded as constants independent of the tempera-
ture. A11 coeScients are assumed to be independent of
the volume. For a liquid crystal of uniaxial symmetry,
the single preferred direction of the molecules is along
the direction 6', and Q;. takes the form

III. REAL BEHAVIOR OF THE SYSTEM

The free-energy density associated with the long-
wavelength part of the order parameter Quctuation for a
uniaxial nematic liquid crystal is given by

V(x)=90+ —,'[AQ'+(VQ) ]——Q'+ —Q (12)

for systems in which director Auctuations can be neglect-
ed. Since Vo is independent of Q, the free-energy density
giving the statistical weight of a given distribution Q(x )

can be written in the form

Q,, (r)=Q(r)[&, (r)n, (r) —
—,'&,I ), &(x}=—'[AQ +(VQ) ]——Q +—Q (13)

where 0, 's are the components of 8' and Q(r) denotes the
fraction of molecules at r aligned parallel to 8'.

For a uniform uniaxial crystal, substituting Eq. (2) into
Eq. (1) leads to the free-energy expansion,

V=V +—'AQ —
—,'BQ +—,'CQ

The N-I transition temperature Tzr is calculated from
V=O; BV/BQ =0 can be written as

Then the partition function averages and the correlation
function are calculated with the weight

WI Q] =exp ~f~(x)dx (14)

where P= 1/KT.
Now consider the system described by Eq. (13) in the

absence of an external field. Now write

28
Txr T'+

9aC

Q=L+M,
(4)

where M is a constant which we choose as

The value of the order parameter at the N-I transition is 8
3C ' (16)

28
QNI 3C

in order to eliminate the cubic term. In terms of the vari-
able L, &(x) reads as

2

The minimization of Eq. (3) yield the following solutions: &(x)= 8 A

2
1 8 +—'(VL )

12 C
Q =0 (isotropic phase)

Q= [1+(1—4AC/B )' ] (nematic phase) .8
2C

(7)

28 A 28
9C 2 9C

82+
4aC

(8a)

The temperature of the absolute stability limit of the
nematic phase is determined by the disappearance of the
QAO solution:

+—I
4

(17}

The problem is transformed into a usual L, interaction,
in the presence of an effective external field, which de-
pends on A and 8,

Then,

r 2
28
9C

(18)

(8b)

82
T, =T*+

3aC
(9)

Following Corre and Benguigui' the order parameter Q,
and the external field H, can be written as

and

8
3C

(10)

H =8 /27C

The critical temperature T, is determined by
B(V—HQ)/BQ=0 and 8 (V HQ)/BQ =0, th—at is,

Now the N-I phase transition will occur only if the field
h' vanishes. That is, if either

(19)

28
9C

(20)

The first case is the usual Ising case, since A remains free
and A = A, & 0 is a point of second-order phase transi-
tion temperature. A, is the temperature of the transition
relative to the mean-field temperature —a depression
caused by fluctuations. If A & A„one is on the coex-
istence curve where the N-I transition point falls, while if
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A ) A, all quantities are regular functions of A —there
is no transition.

The second case, Eq. (20), is more interesting. The
external field is still kept zero, and A from Eq. (20) is sub-
stituted into Eq. (17) to yield

'2
Jp 2

+ ,'(VL—)

2B L2+ CL4
9C 4

(21)

g 2

9C

a critical point if

(22)

Hence we conclude that the Hamiltonian of Eq. (21) de-
scribes a regular phase if

not imply that a symmetry is broken, since from Eqs. (15)
and (16) it follows that for B=0, the equilibrium value of
Q is nonzero on both sides of the transition. In fact,
when BAO, the equilibrium value of Q is never zero.
This is in contrast to the Landau theory, which predicts a
symmetry breakdown, and hence cannot allow for a regu-
lar path going from one phase to the other. But the
Hamiltonian, Eq. (13), possesses no symmetry to be bro-
ken.

The significance of these results is that the model (3)
with BQ local interaction exhibits —due to
fluctuations —a first-order phase transition for
IB I

& B, & 0, a critical point at B =B„and no transition
for IB I

(B,. B=0 is a special point of second-order
phase transition. This is in contradiction to the Landau
theory, which predicts a first-order transition for all
B &0.

9C
=Id

and a coexistence curve if

g2
9C

(23)

(24)

IV. THE CRITICAL REGION IN THE c EXPANSION

Q(x) =L(x)+M, (25)

The appearance of a nonzero equilibrium value of Q is
taken care of by a shift

With the Haniiltonian we have assumed in Eq. (13), the
value of A, depends only on C and on the cutoff A—the
inverse of the lattice spacing. The situation is described
in Fig. 1, which is a plane of zero external field h' and
fixed C. For a given C and A, if A—the temperature —is
varied at constant B then if B satisfies Eq. (22) the path
will be the one denoted by X in Fig. 1, there will be regu-
lar behavior —i.e., no transition; if B satisfies Eq. (23) the
system will follow path Y, on which there will be a
second-order phase transition —a critical point. Finally,
if Eq. (24) is satisfied by B, path Z will be followed and
the first-order phase transition will show up as the line
2 =2B /9Cis crossed.

In fact, the above discussion establishes the result men-
tioned in the Sec. I for the case when no external field is
applied.

If one proceeds along the parabola h'=0 from the ori-
gin until the point B /9C =

I A, I
is reached, the equilibri-

um value of L is zero. Beyond this point, further up the
parabola, L has a nonzero value. ' This, however, does

with

fL(x)dx =0, (26)

where M is a constant and is determined by minimizing
the free energy. This is equivalent to an integration over
M, or to the relaxation of Eq. (26) and imposition of the
constraint

&L(x) &=0. (27)

Now,

F(M)=Fr (M)+bF(M),

where

FL(M)= M ——M +—MA 2 8 3 C 4

2 3 4

(2g)

(29)

is the tree (zero-loop) or Landau approximation, and
b,F(M) can be written as

b,F(M) = — ln f2)L ex—p —f&(L,M )dx, (30)
1

with

%(L,M)= ,'(VL) +—,'(A 2B—M+3CM )L—

+ ——+MC L+—L8 4

3
(31)

The term linear in L vanishes when integrated over the
volume because of Eq. (26). Now renormalize the mass
and write

FICx. 1. The phase diagram of the system for zero external
field and given c. The broken part of the zero effective field pa-
rabola is the part across which the Landau theory predicts a
first-order transition, but in fact there is none.

&(L,M )= [—'( VL ) + ,' r L ]+H;, , —

2L2+ +MC L3+ L4
int 3 4

(32)

(33)
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$rz= g —2BM+ 3( Mi —r~

where r is the full inverse susceptibili. ty. Now choosing
C-s, B ~s'~z, M-e '~, then the equation for BF/BM
to order c is

AM BM—+CM +(—B+3CM)Di(r)=0, (35)

t=A —A, ,

p= (B B—)
4

Now rewrite the Eqs. (43) and (44) as

r =t ——p+3Cp +3CbD, (r) —18C p Dz(r),2 3

(46)

(47)

(48)

where the mass renormalization equation

5r +3CDi(r) 6( B——+3CM) Dz(r)=0 (36)
Cp + [t ——,'p+ 3CED, (r) ]p t —— B

3C

was utilized in deriving Eq. (35). Di and Dz are defined
as To lowest order in c,

(49)

D, (r)= f dq(q +r )
1

(2m )

Dz(r)= d f dq(q +r )
1

(2m )

(37)

(38)

Since Dz(r) ~ ao, when r ~0, for e & 0, if there is to be a
critical point, i.e., a solution with r =0, we must have

B
3C ' (39)

which is identical to Eq. (16). This can happen only for a
special combination of the parameters, namely,

EDi =Di(r) —Di(0) =Sr ln(r/A),

Dz(r) = —S[—,'+ln(r/A)],

(50)

(51)

where A is the inverse of the lattice spacing.
With the free energy we have assumed in Eq. (12), the

value of A, depends only on C and on the cutoF A—the
inverse of the lattice spacing. The situation is described
in Fig. 1 which is a plane of zero external field and fixed
C. The parabola of the zero effective field in Fig. 1 can be
also described by

p=2t .
B
3C

2B2
A ——

9 C
=0, (40) Along this curve Eqs. (48) and (49) take on the form

which follows from Eq. (35) and from Eq. (36) it follows
that at this point,

B2
3CDi(0)=—A, (41)

r = ,'t+3Cp —+—3CSrln(r/A)

+18C Sp, [—,'+ln(r/A)],

Cp —[—,'t 3CSr ln(r—/A)]p=O .

(53)

(54)

to order s. These equations reproduce Eqs. (20} and (24)
to first order in c,, if BAO. The other solution is B=0
and A=AC.

Away from the critical point, for general values of r,
we expand about M =B/3C,

3CS=
—,
' c,

C—p =0(1) .
4

(55)

(56)

The consistency of the orders in c in the above equations
is secured by the fact that, to first order in c,

M= +JM .B

Equations (36) and (35) become, respectively,

r = A —— +3Cp +3CD (r)1 B 2

3 C 1

—18C p D~(r),

(42)

(43)

Equation (54) has a solution with p=O. It then follows
from Eq. (53) that we must have t &0, i.e., below the crit-
ical point in Fig. 1. The behavior of r as a function of t
is just as in the Ising model ~o

Now we investigate whether there may be a solution of
Eqs. (53) and (54) with pAO. Substituting p from Eq.
(54) in Eq. (53), one finds

r =t ——', er ln(r/A)+2s[ —,'t —
—,'sr ln(r/A)]

and

1B2 2B
Cp + A — +( —B/3C)

3C 9C

X [—,'+ln(r/A)] .

If terms of zeroth order in c, are compared one obtains

(57)

B2
A — = 3CD (0) . —

3C 1

Now we define

(45)

+3CpDi(r) =0 . (44)

The critical point is characterized by p= r =0, and thus

r =t+0(s), (58)

which has no solution for t &0. Thus, along the low part
of the zero field parabola there is a singular regular solu-
tion, p=0. The system is described again by the solu-
tions of Eq. (57), and hence of Eq. (58). There are now
two solutions, which to lowest order in c are given by the
two roots of Eq. (54}. Along the parabola of zero field
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both I'I and 5r are even functions of p, and thus the free
energy for the two solutions is the same. This is a line of
first-order transitions. Hence in this region one can easi-
ly calculate the critical exponents and also the equation
of the uniaxial state.

4„-=0

V. EQUATION OF STATE

To calculate the equation of state let us assume that
the nematic-isotropic transition temperature T~l of the
first-order transition is inside the critical region of the
critical point, that is, the Landau theory is incorrect near
T&~. Furthermore, we assume that the equation of state
of the critical point has the form of the scaling-law equa-
tion of state. It is known' that the scaling parameters
are not H and T but hi(H, T) and hz(H, T). The h2 axis
is asymptotically parallel to the coexistence curve. If we
are near T„we can adopt the linear relations, that is,

h i =a,H'+bi T',
h, =a,H'+b, T', (60)

so that the h
&

axis is perpendicular to the coexistence
curve. H' and T' are defined by H' =H —H, and
T'=T —T, . The scaling-law equation of state can be
written as

FICr. 2. Curves Q(h&) for h2%0 and h2=0.

Bh, /BQ=Q '[5f(h~2/Q) —(h~2/Q)f'(h~~/Q)]=0,

(65)

where f' is the first derivative of the function f. If the
quantity in the square bracket is zero, it means that

Qee ~hP (66)

—h *,
' (h~) =R (h2)( V—U) 'h

2 '+S( V —U) h P2

Now we have to choose R(h2) in order that (64) may
take the form of (59). For hi =0, we have Q=Qz= Vh~2

and we get for h i *(h2)

h, =Q f(h~2/Q), (61) (67)

Q Q44 ~ (T44 T) 1P
(62)

where P and 5 are two of the critical indices. We assume
that on the curve Q(T) for H=0, the departure from the
Landau theory can be detected by a critical exponent

and we can write

h, =R(h~)Q '[(1—Uh~~/Q)

—
( V —U) '(h~2/Q) ']

+SQ [(1—Uh~~/Q) —(V—U) (h~~/Q) ] .

We see that we must have

(68)

Q Q44 ~(h hAIL )
1P

(63)

(see Fig. 2) in the vicinity of Q =Q** if hz =const. Q*'
and h

&
are clearly functions of h2. Since for h2=0 we

have Q ~ h', , we adopt the following equation of state:

Although the experimental results suggest that p=pi,
there is no a priori theoretical reason to adopt this choice
of P, .

In the plane (H', T'), the paths defined by H'=0 or
T'=0 make an angle with the coexistence curve. Follow-
ing GrifBths and Wheeler, ' the asymptotic behavior of
the thermodynamic quantities are the same along these
two paths. We use here a generalization of these ideas
and assume that the behavior along a path H'=const is
the same as that along a path hz=const. Accordingly,
we have

R(h2)Q '=Q m(h~z/Q) .

This can be satisfied if

(69)

m ( h ~2/Q ) = W'( h ~2/Q ) (70)

f(x)= 8'x '[(1—Ux )
' —( V—U) 'x ']

+S[(1—Ux ) —( V —U) x ] . (71)

From (71), we can calculate the critical indices y i and a,
which characterize the behavior of the susceptibility
(BQ/BH)H 0 and the specific heat for H=0. The calcu-
lations are lengthy but straightforward, since the relation
between h i (or h 2) and H' and T' is linear. We obtain

where W' is constant. Finally we get the function f(x) of
(61)

h, —hi'(h~)=R(h2)[Q —Q "(h2)]
+S[Q—Q "(h~)] (64)

y i
=ai = 1 —P and 2Pi+ y i =2—ai .

VI. CONCLUSION

(72)

with 1/P, (5 and R (0)=0, Q'*(0)=0, h i
' (0)=0. Fur-

thermore, we have Q'~ = Uh ~z.

We have

We have shown that a model with a tensorial order pa-
rameter, which has a BQ interaction in addition to CQ,
has a critical value 8 =8,(C, A) below which there is no
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transition. At the critical value the system undergoes a
second-order transition with no symmetry break. Above
the critical value of B the transition is of first order. This
is contrary to the prediction of Landau's theory.

The result holds also for d & 4, since it depends only on
the fact that A, =0. Namely, there is a finite depression
of the transition temperature from its mean-field value.
Since the value of A, is not a universal quantity, one may
ask about the effects of higher powers of the field in the
free energy. Such effects would not invalidate the results
of the present work, since these results are all stated
within a specified model. The reason is that near the crit-
ical point they are irrelevant and thus the two second-
order phase-transition points will survive. Their persis-
tance will preserve the structure of the A-8 phase dia-
gram in Fig. 1. However, this question has not been in-
vestigated in detail.

We have also verified that the calculated values of the

critical exponents in this region take the same values. '

If at T~I the behavior is critical, assuming that in the
scaling-law equation of state the nonanalyticity appears
at the critical point (fluidlike critical point) and also on
the spinodal curve, the critical indices of the absolute sta-
bility limit of the nematic phase (metastable) are P&=P
and a&=y&=1 —P&. If one calculates the value of
Tzz —T*, where T~i is the N-I transition temperature
and T* is the temperature at which the light scattering
intensity diverges in the supercooled isotropic phase in
this region, one obtains the same result. '
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