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one-dimensional behavior of ferroelastic domain arrays in neodymium pentaphosphate
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Domain structures in ferroelastic neodymium pentaphosphate NdP50&4 of small a and b dimensions
have been observed to be nearly periodic domain arrays of quasi-one-dimension sandwiched by parallel
domain walls along the (001) lattice plane. Based on a continuous order-parameter profile along the wall

normal, a positive temperature-dependent wall energy was obtained from Landau's theory of second-
order phase transitions. Then a one-dimensional spin system, with the spins corresponding to the shear
strains of the two orientation states of NdP50&4, has been developed to describe statistically the effect of
thermal energy exciting the fluctuation of the wall number. The theoretical deductions were well con-
sistent with the actual drastic increase of walls on approaching the phase transition temperature and the
dynamical behavior of the domains in external stress fields.

I. INTRODUCTION

A great number of crystals discovered and synthesized
in recent years have been shown to be ferroelastic (or co-
elastic) and the unique ability of these crystals to break
into domains, which are usually switchable under the
influence of mechanical stresses or temperature variation,
has attracted many investigators' attention. ' However,
though many experimental observations of domain pat-
terns are available, little theoretical work has been per-
formed to understand the principles governing these pat-
terns in the important class of ferroelastic materials.

In this class, neodymium pentaphosphate NdP50&4
(NPP) is a pure ferroelastic crystal with two equivalent
orientation states of opposite shear strains +es (Voigt no-
tation ) in the ferroelastic phase. One of the remarkable
characteristics of the ferroelastic domains is that they are
often aligned as nearly periodic domain arrays in a sys-
tematic and repeatable way. A typical domain array and
its strain configuration are illustrated in Fig. 1, in which
the two kinds of domain laminae are repeated alternative-
ly at nearly equal intervals with the shear strain sequence
of alternating signs.

In NPP crystals of small a and b dimensions, the
domain patterns are strongly dependent on temperature.
The temperature evolution of a domain array in a (010)
wafer with dimensions of 2 mm (a dimension) by 0.5 mm
(b dimension) by 8 mm is shown in Fig. 2. In the initial
state at room temperature, the plate consists of only
several domains. At T)350 K, thin domain laminae be-
gin to emerge from the thick domains with the wall inter-
vals decreasing. When the temperature is raised further,
the wall density increases drastically till the plate is filled
with numerous thin domain stripes. It was observed that,
although the local wall density fluctuates when T is very
close to the Curie point T, ( =417 K), the average wall

density distinguishable within the resolution limit in a po-
larizing microscope does not increase indefinitely but be-
comes saturated. At T=T„the walls disappear gradual-
ly as the crystal undergoes the second-order transition
from monoclinic P2&/c to orthorhombic Pncm

In Figs. 1 and 2, the walls running through the crystals
are invariably parallel to the (001) lattice planes due to
the strain compatibility condition between adjacent

loop, m

FIG. 1. A nearly periodic domain array consisting of a-type
twins in a ferroelastic NPP plate [b-type twins with (100) walls
rarely occur due to their higher interfacial energy than that of
a-type ones]. (a) Domain pattern observed under a polarizing
microscope; the domains are visible due to their birefringence.
(b) Spontaneous strain configuration; strains e, (=8.4X10 at

—3

room temperature) exaggerated; twin relationship verified by
synchrotron-radiation topography (Refs. 9 and 10).
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domains. ' Therefore, these arrays are quasi-one-
dimensional (1D) structures with the spontaneous strain
varying only along the z axis, i.e., the direction of the
wall normal. The 1D behavior is also characterized by
the switching process of domains when mechanical stress
c5 is exerted on the crystal. As shown in Fig. 3, the small
shear force F acting on the (001) surface switches the
domains in such a way that the walls move laterally along
the normal of the wall to keep the 1D array structure.

Similar phenomena can also be observed in other rare-
earth pentaphosphates, "' but the mechanisms has not
been appreciated completely. In this paper, we attempt
to elaborate a 1D statistical model to decipher the in-
teresting dynamical behavior of the domain arrays ob-
served in NPP crystals.

II. 1D STATISTIC MODEL OF DOMAIN ARRAY

A. Domain wall energy

FIG. 2. Evolution of the domain array in NPP on heating.
The number of domains increases with temperature from (a) to
(c), and (d) is taken above T, with all the domain walls annihi-
lated.

(a)

From experiments, it is inferred that the creation and
annihilation of domain walls associated with the dynami-
cal properties of domain arrays in rare-earth pentaphos-
phates are directly dependent on the wall structures and
their interfacial energy. However, no systematic con-
clusions concerning the wall structures have been ob-
tained since it is impossible for rare-earth pentaphos-
phates to be examined by the only available tech-
nique, high-resolution transmission electron microscopy
(HRTEM), due to the heavy electron-radiation damage.
Here we employ the continuum theoretical modeling'
of the order-parameter profile along the wall normal to
obtain the wall energy of NPP.

From the structural viewpoint, the spontaneous strain
e5 can be considered as the order parameter in the
second-order phase transition of NPP. Then for the 1D
domain structure the free-energy density, added to a term
C[de~(z)/dz] corresponding to the local nonuniform
distribution of e~ at the domain wall (see Fig. 1), is writ-
ten as

2
de, (z )F=FO+ A (T T, )e~(z)+Be—~(z)+C

(b)

where 2, B, and C are positive constants. Minimizing
the free energy F with respect to e5(z) yields the
solitary-wave solution of the strain distribution of a wall
located at z =0:

FIG. 3. Variations of the domain array caused by shear
forces. (a) Initial state; (b) a positive shear force leading to the
lateral growth of positive domains with white contrast; (c) the
inverted force leading to the growth of negative domains with
black contrast.

2C
A(T, —T) (3)

is the wall thickness. From Eqs. (2) and (3) we can see
that the strain changes from —e5 to e5 across the wall in

e~(z)=e~ tanh (2)

where e5=[A(T, —T)/B]' is the spontaneous strain of
a homogeneous crystal (the temperature dependence of e~
has been verified in Ref. 10), and

1/2
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a smooth way microscopically, which leads to a special
structure of the domain wall deviating from the homo-
geneous crystal, as schematically shown in Fig. 4. In ad-
dition, the wall width 5 diverges as the temperature ap-
proaches T, .

Generally, the interfaces between different orientation
domains are very narrow or even reduce to a single lattice
plane from HRTEM observations and crystallographic
descriptions. ' So the continuous model of the walls in
NPP is a theoretical assumption and has not been corro-
borated by any direct observations. However, some ex-
perimental phenomena in Sec. I may indirectly show the
validity of the model: (i) the walls of NPP do not increase
indefinitely but become saturated when the temperature
approaches T„which may result from the divergence of
the wall width (x-ray diffraction has shown that the wall
width in KH2PO4 increases sharply as the transition
point is approached from below' ); (ii) the easy mobility
of the walls under small shear stress E5( = 10 Pa or less at
room temperature) also indicates the definite wall width
since wider boundaries are generally more mobile than
sharp ones. '"

Based on the continuous model, the interfacial energy
density of a domain wall is then the energy deviation
from the homogeneous crystal:

E = 3 T—T, e5z —e5 +8 e5z —e5

2
de5(z )+C

dz

where D )0 is an integration constant dependent on 3,
B, and C. In Eq. (4), the wall energy vanishes asymptoti-
cally at T~T, . It can be seen that during the transition
process there always exists a temperature point Tf where
the energy of a wall is equal to the thermal energy:
SD(T, —Tf) =kiiT (S is the wall area). Above Tf,
we have SD(T, —T) & ks T and then the fluctuation of
domain walls is possible.

B. 1D spin system

The ability of NPP to split into nearly periodic 1D
domain arrays at temperature close to T, (with the
periodicity of the arrays in different samples being almost
the same) shows that the crystal can be treated as a 1D

where 5 is the cross-sectional area of the bar. Equation
(5) is very similar to the 1D Ising model of a ferromag-
net' except that the interaction energy density E be-
tween two domain units of opposite strain senses is
dependent on temperature (stemming from the variation
of spontaneous strain with temperature), i.e., it decreases

The partition function of this 1D domain lattice is easi-
ly obtained as

Q = g g . . . g exp( PH)—
s& =+1 s2 =+1 sN +1

= [1+exp( PSE )]—
where p=(ks T) . Differentiating Q with respect to p,
we obtain the total energy of the walls:

"spin system" consisting of thin domain lamina of oppo-
site shear strains. Consider a NPP bar with small a and b
dimensions. We divide it into a great number of discrete
thin domain laminae with the lamina surfaces lying in
(001) lattice planes, and term each lamina a domain unit
By further assuming that all the domain units have the
same thickness, they line up along the c axis into a
periodic domain lattice in the bar, as shown in Fig. 5. In
this 1D domain lattice, the spontaneous strain of each
domain unit can be written as sez where s is either 1 or
—1. When two neighboring domain units have opposite
senses of spontaneous strains, they interact by forming a
domain wall separating them; otherwise, there is no in-
teraction and they form a thicker domain lamina. Thus
the domain lattice has a nearest-neighbor interaction
equal to the (temperature-dependent) wall energy.

From the continuous picture of the wall (see Fig. 4),
the domain lattice constant d, the thickness of the
domain unit, must be not less than the wall width which
is greater than the crystal lattice constant. Usually we
can choose the width of the thinnest domain lamina pos-
sibly existing in NPP at any temperature below T, as the
domain lattice constant.

Then for the system containing X domain units
(N=L /d where L is the length of the bar), the Hamil-
tonian corresponding to the domain wall energy with no
external force applied is

N —1

H =SE g —,'(1 —s;s;+, ),

++++++ — — — — — ++++++

FIG. 4. Schematic picture of a coherent domain wall in NPP
indicating the continuous profile of the spontaneous shear strain
along the wall normal.

FICs. 5. Schematic representation of division of a NPP bar
into a 10 domain lattice, the signs "+"and "—"indicating
spontaneous strain senses of domain units and heavy lines
representing domain walls.
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g lng NSE

BP 1+exp(PSE )

Therefore, the average number of walls in the system is

N
1+exp(PSE„)

1V

1+exp[SD(T, —T)3~~/k~P]
(8)

As a result of the model, the number of walls increases
monotonically as temperature increases.

Figure 6 shows two calculated curves from Eq. (8) to-
gether with a set of experimental data of the average den™
sity of domain observed in a (010) NPP wafer. From the
two curves, we can see that the evolution process is also
dependent on the value of the wall area S. For small S,
the energy for creating a wall running through the bar is
small, and fIuctuation of domains can occur in a wide
temperature range. When S is larger (corresponding to
the macroscopic dimensions of the crystals in the experi-
ments), the wall energy directly proportional to S also be-
comes larger, and consequently creation of walls is only
excited at higher temperature by the higher thermal ener-
gy k~ T. It can be seen that the theoretical curves for the
larger magnitude of S are consistent with the experimen-
tal results.

Equation (8) also leads to n„~N/2 which is indepen-
dent of S in the limit T~T, . In reality, when T ap-
proaches T„the spontaneous strain e~ tends to be zero,
and the difference of two adjacent domain units with op-
posite strains, hence, becomes very small. Correspond-
ingly, the probability for two adjacent domain units to
have opposite strains tends to the probability for them to
have the same sign of strains, i.e., they approach —,

' from
below and above, respectively. Thus numerous domain
laminae are bound to emerge from the crystal and form
periodic arrays in the temperature range close to T„even
in the case that the a and b dimensions are very large. At

T=T„the crystal becomes orthorhombic and the walls
disappear, so the number of walls n„=N/2 loses it phys-
ical meaning.

It should be noted that in the above model the dynami-
cal behaviors of domain arrays are inferred to result from
the existence of a positive wall energy and from the effect
of thermal energy "populating" excited states of the 1D
system (i.e., an effect of increasing entropy). This picture
would therefore be different from the situation in fer-
romagnets in which the domain pattern is determined en-
ergetically by the balance between the wall energy and
the magnetic energy of the sample surface. The latter en-
ergy is decreased by the multiplication of domains' (the
surface effect is also significant in ferroelectrics ). But
for pure ferroelastics the spontaneous strains do not pro-
duce any charges on the surface, so we assume that the
surface effect in NPP is absent or can be neglected. Actu-
ally, no investigation has indicated the existence of a
similar surface with special structure deviating from the
bulk crystal of ferroelastics.

III. INFLUENCE OF STRESSES ON THE 10 SYSTEM

Since the domain arrays in NPP crystals are easily al-
terable by small external stresses, we must pay attention
to the situation that the 1D spin system is put in external
stress fields. From the experiments we have demonstrat-
ed that the domain arrays maintain their 1D structure in
spite of the lateral movements of wall when mechanical
stresses are applied. Therefore, we still can consider the
crystal in external stress fields as a 1D domain lattice, but
the system's Hamiltonian must include the coupling ener-

gy between the strains and the stresses in the limit of
linear theory of elasticity: —ge;e; (i =1,2, . . . , 6). For
simplicity, we discuss the case that only a homogeneous
shear stress c5 is applied on the system.

For small c.5, the coupling energy density, or rather the
potential of the domain unit in the stress field, is —c5se5.
Then by taking into account this coupling the system's
Hamiltonian at S= 1 can be written as
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The partition function is derived to be

Q = [cosh(PEse5)+ [sinh (Pese5)

FICx. 6. Temperature dependence of the average number of
domain walls. Experimental data were measured in a NPP crys-
tal with dimensions of 2 mm (a dimension) XO. 5 mm (b dimen-
sion) XS mm during the phase transition process; theoretical
curves were calculated from Eq. (8) with D Ik~ = 1.

+exp( 213E )]'~ }— (10)

The energy of the system is, therefore, obtained in the
form
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8ln
Bp

NEse5 sinh(PE5es )

[sinh (PE5e5)+exp( —2PE„~]'
NE exp( —2PE~ )

cosh(PE5es)[sinh (PE5es)+exp( —2PE )]' +sinh (PEses)+exp( 2P—E )

The total energy in Eq. (11) contains two kinds of energy: one if the wall energy, and the other is the coupling energy
between the spontaneous strain and the stress. Since the average spontaneous strain of each domain unit is

es + 1 g Ing es sinh(PEses )

N, .
&

' NP BE5 [sinh (PE&es)+exp( —2PE )]'
(12)

the coupling energy —Ns5(es ) of the system is the first term at the right side of Eq. (11). Correspondingly, the second
term is the total wall energy, and then the number of domain walls under the inAuence of c.5 is

N exp( —2PE )

cosh(Ps5es)[sinh (Psse5)+exp( —2PE )]'~ +sinh (PEses)+exp( 2PE )— (13)
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FIG. 7. Shear stress dependences of the domain wall number
and the average spontaneous strain (e~ ) with 13E =1.

It is apparent that Eq. (13) turns into Eq. (8) at zero
stress. Also, we have (es)=0 at as=0 from Eq. (12)
since the probability for each domain unit to possess posi-
tive strain (up-spin, s = 1) or negative strain (down-spin,
s = —1) is —,

' under this condition.
From Eq. (13) we can see that the average strain (e5 )

increases with the increase of the stress c5. Meanwhile
the average wall density n decreases monotonically, as
illustrated in Fig. 7. In the range of small c5, however,
there is a remarkable contrast between the behaviors of
(e, ) and n„:(es) rises drastically while n declines
slightly as c5 is increased. In fact, as the applied stress E5

of positive sign is increased, more domain units of nega-
tive strain are switched to the positive-strain state, which
leads to the increase of ( e s ) . At the same time, the ap-
plied stress c5 of small magnitude can hardly inAuence
the wall number but moves the wall laterally and modu-
lates the structure of the domain array, just as demon-
strated in Fig. 3.

At extremely large c,s, we have (e5) =e5 and n =0
from Eq. (13). This means that the whole crystal is

switched to a single-domain state with all the walls an-
nihilated.

IV. DISCUSSION

Based on the fact that the domain array in NPP crystal
consists of 1D structures along the [001] direction with
the walls separating consecutive domains, and by divid-
ing the crystal into a 10 domain lattice with each domain
unit having an up- or down-spin (corresponding to the
positive or negative sign of spontaneous shear strains), we
have designed a 1D spin model (with the spins corre-
sponding to the shear strains of the two orientation states
of NPP) to describe statistically the dynamical behavior
of the domain arrays during the second-order ferroelastic
phase transition, i.e., the rapid decrease of the distance
between domain walls on approaching the transition tem-
perature. However, the application of this model is usu-
ally limited to the case that crystal dimensions along both
the a and b axes are made small so that the walls running
through the crystals have small interface dimensions and
can be easily aligned to a 10 wall array.

For large crystals, however, there may be some
discrepancies and inconsistencies between the experi-
ments and the above theories. First, internal stresses are
usually constrained within these crystals on cooling down
after growth, so that real domain configuration may be
complicated, For instance, tapered domains terminating
inside the crystals and even b-type twins (whose forma-
tion energy is very high) can be observed in these crystals
due to the internal stresses. In these cases, the crystals
cannot be considered as 10 structures. Second, planar
walls running through a crystal of great dimensions along
the a or b axis have large interfacial area, and conse-
quently the energy of each wall is very large. This large
wall energy makes it hard for the walls to form a 10
structure, or to obey the statistical mechanics strictly.
Examples have been described in Ref. 6, where a special
pattern of shear stress exerted on a NPP plate of 10 mm
in the a dimension caused bubble domains and tapered
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domains in he crystal rather than moving the walls la-
terally.

Another point which should be emphasized is that in
our model we have neglected the influence of elastic ener-
gy. In a homogeneous stress c,5, the elastic energy in-
duced by the stress can be separated from the Hamiltoni-
an of Eq. (9). For other stresses, however, the interaction
between the order parameter and the stress-induced elas-
tic strains cannot be neglected. ' For example, the cou-
pling between the spontaneous strain e5 and the normal
elastic strain e, , e2, or e3 can lead to significant varia-
tions of domain structures when the corresponding
compression acts on the (100), (010), or (001) plane of
NPP or Nd„La, P50&4. ' The detailed description of
this coupling needs further development of the above
theories.

In a word, the statistical model constructed in this pa-
per reveals the intrinsic mechanisms of the switching pro-
cess of domain arrays in NPP. Furthermore, domain ar-
rays can occur in many ferroic crystals, ' and the re-

suits obtained from this model may be quantitatively of
generality for other continuous ferroelastic phase transi-
tions as long as the wall energy decreases asymptotically
to zero towards the Curie point T, . For crystals whose
transitions are of first order, there is usually a cutoff of
the order parameter around the transition temperature,
which indicates that the wall energy associated with the
parameter becomes zero discontinuously from below. So
the dynamical properties of the domain arrays in these
substances are seldom observed.
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