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Using the new "Troika" x-ray undulator beamline at the European Synchrotron Radiation Facility,
we have succeeded in measuring coherent di6raction ("speckle" ) patterns from artificial multilayers.
The patterns are unusual in that they are unremarkable in the scan direction perpendicular to the Bragg
angle, showing a single peak of the width of the Fraunhofer maximum, but have dramatic structure in

the direction of the Bragg angle. This is shown to be consistent with the extreme asymmetry of the

geometry that causes more than one well-ordered domain of the sample to fall within the coherently il-

luminated region. The patterns are sufficiently simple that we are able to model them reasonably well by
fitting explicit phase parameters to a fixed number of illuminated "blocks." Two fitting procedures are
described that may have some general utility.

I. INTRODUCTION

New, brighter, undulator sources of x rays offer consid-
erable possibilities for altogether different kinds of
diffraction experiments. One of these possibilities is to
utilize the improved coherence of the beam, which is a
quantity associated directly with the source brightness.
If a diffraction experiment is carried out with an x-ray
beam that is largely coherent, the observed intensity will
depend on the relative phases of the scattering of all corn-
ponent parts of the illuminated sample, in addition to all
the usual atomic-level structural contributions. In a sam-
ple made up of a mosaic of domains, the phases are relat-
ed to the relative positions of the domains. Much of the
excitement in the nascent coherent difFraction ("speckle" )

field' stems from the possibility one day of achieving
atomic-resolution fluctuation spectroscopy: in the case of
a sample whose internal domain structure is due to in-
trinsic fluctuations, such as those associated with a phase
transition, the time dependence of the fluctuation may
therefore be probed by monitoring the variations in inten-
sity of the coherent diffraction signal.

Here we investigate the practicality of interpreting the
coherent diffraction from a simple structure, an artificial
multilayer prepared by molecular beam epitaxy (MBE).
We first describe our measurements, which were made
during an experimental run that utilized undulator radia-

tion for coherent diffraction, at the European Synchro-
tron Radiation Facility (ESRF) in Grenoble. Then we
describe our attempts to understand the data at a quanti-
tative level, by constructing a "random-phase model" in
which the illuminated part of the sample is considered to
be a "phase structure" made up of discrete scattering
"blocks, " each with its own phase relative to its neigh-
bors.

Coherent diffraction of x rays is a relatively new sub-
ject, with relatively little published work to date. One
significant previous study investigated the grain struc-
ture induced in a sample of Cu3Au by quenching from
above its disordering temperature. In other static work,
speckle has been recorded from a structured polymer thin
film. Recently, experimental time-correlation functions
have been observed in two systems, Fe3A1 near to its crit-
ical temperature, and in small-angle scattering from col-
loidal gold. Historically, temporal effects have been dis-
cussed mainly in the context of coherent light scattering,
where the time structure of a scattered signal can be
readily interpreted in terms of diffusion or motions of
scattering objects. The information so obtained is al-
ways on a length scale of the wavelength of light, and so
the traditional technique is inherently unable to probe
contrast on an atomic scale. X rays offer the appealing
possibility of extending these powerful techniques to
probe motions on the scale of individual atoms.
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I. EXPERIMENTAL CONFIGURATION

The measurements were made at the ID10 "Troika"
beamline at ESRF in which the radiation source is a per-
manent magnet undulator. The beaID was monochromat-
ed with a single-bounce sideways-scattering water-cooled
thin Si(220) crystal located 45 m from the source and set
to an energy of 12 keV (A, =l.05 A). The thin crystal
passed a significant fraction of the power of the beam to
assist the cooling. The total incident power was reduced
further by closing horizontal slits at the 27 m point of the
beamline. Harmonics in the diffracted beam from the
monochromator were filtered by refiection from a SiC
mirror which restored the beam to the horizontal plane.
The sample was located at 46 m, mounted on a four-
circle diffractometer, oriented with its principal axis vert-
ical.

The most critical parameter in a coherent diffraction
experiment is the lateral (or transverse) coherence length.
A perfectly monochromatic plane wave has a constant
phase everywhere in a plane perpendicular to its wave
vector k. Two monochromatic plane waves propagating
in directions differing by an angle 60 will have a phase
difference of 2m within this plane at a distance g~, the la-
teral coherence length, given by (kh8)/~=2m. . 68 is
determined by the finite size of the x-ray source, which ei-
ther is intrinsic to the storage ring or may be set by a slit
or pinhole inserted into the beam. If a source of size w is
located at a distance 8' from the point of observation,
then 68=w/8; and g~=(2n/k)b, 8=8. '/w. The intrin-
sic undulator source width at ID10 is not isotropic, but
has wH = 1026 pm [full width at half maximum
(FWHM)] in the horizontal and m&=225 pm (FWHM)
is the vertical directions. We therefore made use of the
horizontal slit at 8'I =19 m, set to an opening of
w& =100 pm, to satisfy WI/wl = W/wz, to obtain an ap-
proximately isotropic lateral coherence length of /~=21
pm at the sample position, 8'=46 m.

The longitudinal coherence length
g~~

is determined
solely by the bandwith of the monochromator,

g~~
=1,/(hE/E). For symmetric Si(220) at 12 keV, hE/E

is estimated to be 5. 1X10,giving /~~=2 pm. The lon-
gitudinal coherence must be longer than the maximum
path-length difference (PLD) in the experiment, in order
to observe coherence effects. In our experiment, which
uses the symmetrical extended-face geometry, the PLD is

p 'sin 8&, where p ' is the absorption length and 8& is
the Bragg angle of diffraction. p ' is estimated to be
28.7 pm and Oz =0.79' for the sample and measurements
we will be referring to, giving a PLD of only 0.006 pm.
From this we conclude that the longitudinal coherence is
sufficiently good that it can be ignored.

To select a coherent beam for the experiment, it is
necessary to place an aperture in front of the sample with
an opening smaller than g„=21 pm. We used a nominal
d, =7 pm circular aperture ("pinhole" ) laser drilled into
a 50 pm Pt sheet, centered behind a 0.5 mm hole drilled
in a 1 mm thick Ta plate. This pinhole was mounted on a
precision X-Y stage with submicrometer repeatability. A
nominal d. l =3.5 pm front pinhole was also used for cali-
bration. This front pinhole was located approximately

FRONT

PINHOLE

d1

INCOMING

BEAM

MULTILAYER SAMPLE

FIG. 1. Layout of the experiment. The front pinhole selects
a sufficiently small beam from the monochromatic undulator
beam that it is essentially phase coherent across its size d I. This
illuminates the multilayer sample at the Bragg angle for one of
the superlattice rejections perpendicular to its surface. The mi-
croscopic "block" structure assumed in our data analysis is
drawn exaggerated for clarity. The scintillation x-ray detector is
located behind the back pinhole which is a sufficient distance D
from the sample that it measures essentially the angular distri-
bution of the scattering. In the settings corresponding to the
data of Figs. 3 and 4, d I =7 pm, D = 1.3 m, and d2 =20 pm.

100 mm before the sample, at the center of the four-circle
goniometer. A second, back pinhole of diameter d2 =20
or 5 pm was installed on the 28 arm of the diffractometer
at a distance D =1.3 m from the sample, and followed by
a scintillator/photomultiplier detector. The motion of
the diffractometer and pinholes was coordinated by the
beamline experimental computer. The experimental lay-
out is sketched in Fig. 1. The MBE-grown sample con-
sisted of 377 repetitions of alternating layers of GaAs and
AlAs on a GaAs(100) substrate. The period was 13.5 lay-
ers or 38 A.

II. RESULTS

The coherence of a beam is usually measured as its
fringe visibility or contrast. In order to observe this,
scans were made of the direct beam without a sample.
The results are shown in Fig. 2, for the smallest pinhole
diameters d I

=3.5 pm and dz =5 pm, in order to obtain
the maximum visibility. The Fraunhofer diffraction of the
front pinhole is clearly seen in the two perpendicular
scans of the back pinhole. The data are presented as
counting rate vs back-pinhole position y. We distinguish
the direction parallel to the motion of the
diffractometer's 28 arm as

y~~
(horizontal in our setup)

from the perpendicular direction as y~ (vertical in our
setup). Many fringes are seen with slightly different con-
trast in the four directions examined; this is believed to
be a property of the precise shape of the pinhole, and the
straightness of its edges. The scan marked (a) in Fig. 3 is
Fraunhofer diffraction obtained with a d I =7 pm, dz =5
pm setting. The fringes in Fig. 3(a) are also seen to fade
away and then resume as a function of the off-axis dis-
tance; this is also due to a deviation from roundness of
the 7 pm front pinhole, which appears to be worse than
the d

&

=3.5 pm pinhole used in Fig. 2.
The sample was then installed and aligned on the first-

order diffraction of the superlattice. Following the usual
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FIG. 2. Fraunhofer diffraction measured for the direct x-ray
beam without a sample. A d

&
=3.5 pm front pinhole and d2 =5

IMm back pinhole were used to ensure good visibility of the
fringes. Scans of the back pinhole were made along two perpen-
dicular directions, as indicated.

FIG. 4. Intensity distribution of the speckle patterns record-
ed for the (000)+ superlattice peak of he 38 A period
GaAs/A1As multilayer, as a function of the back pinhole posi-
tion y~I, measured parallel to the scattering plane along the
direction of the Bragg angle The two sets of data (a) and (b)
correspond to two different positions on the sample, separated
by 20 pm in /ateral position (perpendicular to the page in Fig.
1). The full curve is the best fit to Eq. (1) using the phase struc-
ture of line (a) in Fig. 6 below; the dashed curve shows the im-
provement when the block sizes are also allowed to vary, corre-
sponding to the phase structure of line (b) of Fig. 6.
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FIG. 3. (a) Measurement of the Fraunhofer diffraction from
a dI=7 pm front pinhole resolved by scanning a dz=5 pm
pinhole in front of the detector along the vertical direction. The
visibility of the fringes is considerably reduced from those from
Fig. 1. (b) Coherent diffraction of the (000)+ peak from the
multilayer sample along the same direction. 7 pm front and 20
pm back pinholes were used. The central peak has the same
width as the Fraunhofer diffraction in (a). (c) Coherent
diffraction of the same peak along the horizontal direction. The
same 7 pm front and 20 pm back pinholes were used. Several
peaks are observed, with each peak having the same width as
the Fraunhofer diffraction in (a).

convention, this peak is a satellite of the origin of recipro-
cal space, so is denoted (000)+. The diffraction coming
from the sample was analyzed again in the two directions
y~ and yII, and is shown in Figs. 3(b) and 3(c), respective-
ly. The yz scan shows a single peak 20 times more in-
tense than the background features, with the same width
as the direct beam in Fig. 3(a). The yII scan shown in Fig.
3(c) is totally different, and shows many peaks within a
broad envelope function. The individual peaks each have
approximately the 5S pm minimum-to-minimum width of
the corresponding scan across the direct beam in Fig.
3(a), which has about the width expected for the circular
Fraunhofer di8raction from the nominally round dl =7
IMm source pinhole itself, 1.22 X 2AD /d

&

=51 pm,
minimum to minimum.

The distribution of peaks in Fig. 3(c) is the "speckle"
pattern, and its interpretation is the main focus of this
paper. An experimental verification that this depends
sensitively on the fine structure of the sample is shown in
Fig. 4. The only difference between curves (a) and (b) in
Fig. 4 is that the front and back pinholes were shifted
perpendicular to the scattering plane by 20 pm in the yj
direction (out of the plane of the page in Fig. 1) to il-
luminate a fresh part of the sample. Although its qualita-
tive features (e.g. , overall width) are preserved, the
heights and positions of all the peaks are substantially
changed between the two patterns.
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III. GENERAL QBSERVATIGNS REAL SPACE

The dramatic difference between scans (b) and (c) of
Fig. 3 shows that the speckle pattern is one dimensional
with significant speckle features in the 28(y~~) direction
only. At first glance this result is enigmatic, since there is
nothing anisotropic about the fabrication of the sample,
which should be cylindrically symmetric. In convention-
al difFraction experiments, a peak that is broadened in the
28 direction is interpreted as due to variations of lattice
parameter, just as the perpendicular directions corre-
spond to mosaic spread. It is of course perfectly reason-
able that an artificial multilayer sample should have in-
trinsic d-spacing disorder, but we will show that this is ir-
relevant to the interpretation of the speckle, except to the
extent that it changes the ultimate position of the outer-
most layers.

We note that the Bragg angle of the (000)+ superlat-
tice reAection, 8&, is only 0.79'. This grazing angle of in-
cidence onto the multilayer has two important conse-
quences. Since the absorption length of 12 keV x rays in
Ga& „Al„As is p '=28. 7 pm, the penetration depth of
the beam into the sample at this angle is —,'p 'sinO~, or
only 0.20 pm, considerably smaller than the width of the
coherent beam emerging from the front pinhole (d& =7
pm). The coherent diff'raction effects observed in Fig.
3(c) therefore cannot come from variations of phase of
scatterers along the depth direction. Instead, since the
shape of the illuminated spot on the sample is
d, /sin8~ =500 pm in the horizontal and d& =7 pm in
the vertical, we conclude that the necessary interference
must arise from scatterers spread out in the lateral direc-
tions instead. The grossly elongated "footprint" explains
the apparent anisotropy between y

~~

and y~.
Comparing Figs. 3(a), 3(b), and 3(c), we see that the

size of each speckle peak is the same as the Fraunhofer
central maximum. This is a necessary consequence of the
fact that a small region of sample is illuminated, and all
difFraction is broadened by that finite size. The envelope
of all the peaks is considerably broader, however, and
this must be (inversely) related to the finite size of each
coherently scattering grain in the sample, instead. For
this reason, we can see that there is a general relationship
between the total number of speckle peaks (here about
eight) and the number of grains in the sample. This num-
ber roughly corresponds to the number of phases of in-
tefering wave needed to construct the speckle pattern as
an interference sum. The efFective grain size is hence of
order 500 pm divided by 8 = 63 pm. This lateral grain
dimension is therefore larger than the beam in the trans-
verse direction, and so explains why no substantial speck-
le was seen in the y~ direction.

This interpretation is clarified by the corresponding
reciprocal-space view of Fig. 5. The X-8 independently
difFracting "grains" of lateral dimension w-63 pm and
effective thickness (penetration hmited) t-0.2 pm are
shaded in the real-space picture in Fig. S(a). These give
rise to difFraction peaks in reciprocal space which are
strongly elongated along the direction perpendicular to
the plane of the sample, q, . %Then the coherent-
difFraction contributions from each of the X grains inter-
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fere together, the speckles that are generated are X times
narrower still in q~~, and give rise to the striped appear-
ance of the spot in Fig. 5(b). A scan of the back pinhole
along y~~

is a conventional 20 scan, which follows the
curved trajectory shown in Fig. 5, cutting across the
speckles obliquely. The typical spacing between the
speckles can be seen to depend on the Bragg angle via

2m 1

D Nw k sin8~ Nw sinO~

However, from Fig. 5(a), it is clear that Xw sin6& =d&,
the size of the incoming beam, due to the foreshortening
effect. It follows that by~~=A, D/d, , which is just the
spacing of the side fringes in a normal one-dimensional
(1D) Fraunhofer pattern.

Figure 5 also helps to show that d-spacing disorder
cannot explain the speckle. Such disorder would modify
the distribution of the difFraction peak only along the qz
direction. Even though this is close to the 20 direction,
the & 1000:1 aspect ratio of each speckle peak ensures
that changes along q, do not alter noticeably the appear-
ance of the oblique scan, which is the speckle pattern.
Indeed, conventional diffraction (rotating-anode) mea-
surements of the (000)+ peak of the same sample shor ed
widths in 28 that were considerably broader than those in
Fig. 4, and which correspond roughly to the penetration
depth of the sample instead. Another way to see that the
20 scan resolves the speckles is to construct the resolu-
tion function, as in Fig. 5(c). b, k; [(2m. /A, ) X(100 pm)(19

c

j I

FIG. 5. (a) Real- and (b) reciprocal-space views of the origin
of the speckle pattern. The aspect ratio of the elliptical-shaped
peak has been grossly underestimated for clarity. The
difFraction pattern is sharp and featureless in the direction out
of the plane of the page. Further explanation is in the text. (c)
Construction of the resolution function. The divergences of the
incident and exit k vectors, denoted Ak; and hkf, are deter-
mined by the pinholes.
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m) =3X10 A FWHM] and bkf [(2n/A ) X(20
pm)(1. 3 m) =9X 10 A ' FWHM] are the incident-
beam and diffracted-beam divergences, determined by the
beamline apertures and pinholes. While these are already
small, they combine at an angle of 28 as shown to pro-
duce a needlelike resolution function with a width of only
1 X 10 A ' in the direction that matches the speckles,
sufficient to resolve their spacing of 1.3 X 10 A

IV. RANDOM-PHASE MODEL

For reasons stated above, the phase variations neces-
sary to produce the observed speckle must therefore be
due to lateral variations of scattering phase. This is illus-
trated schematically by the "block" structure drawn on
the samples in Figs. 1 and 5. The block represents the ex-
tent of a region of the sample that scatters coherently; ad-
jacent blocks have distinct phase differences between
them. The argument given above may be generalized to
say that any variations of the internal vertical structure
of the blocks (such as d-spacing disorder) cannot be the
origin of the phase difference, because such structure will
always give rise to features that are very broad (-2n/t)
along the qz direction. To accrue a phase shift of the or-
der of ~ between adjacent blocks, it is necessary to have a
height difference between their outermost diffracting
planes of half a superlattice period, of 19 A, which seems
to be reasonable over a lateral distance of 60 pm for the
variation of 61m thicknesses out of a total of 15000 A
grown. Since we estimated there were of order eight
clear speckles in the pattern, we conclude there must be
of order eight such distinct "blocks" within the footprint
of the coherent beam.

Assuming this block model of the sample then allows
us to construct a functional description of the speckle.
We can assume the diffraction from each block to be per-
fectly specular, and to difFer from that of its neighbor
only by an arbitrary phase associated with the local
height of the multilayer modulations above the substrate.
When illuminated by a perfectly coherent x-ray beam the
sample may be considered to be a linear phase array emit-
ting wave fronts with a different phase from each block.
If x represents the position across the beam, which ex-
tends over the range 0 &x & d &, at the sample position,
then the phase of the diffracted beam can be approximat-
ed by a discrete value corresponding to each of the X
blocks,

p(x)=QJ, (j —1)d, /N &x &jd, /N, j=1, . . . , N .

If we observe the superposition of the wave fronts on a
screen a large distance D from the sample, then we find
the amplitude variation with position on the screen y is
given by the standard Fraunhofer integral'

d) , xyA(y)= f exp 2@i exp[i&(x)]dx
o A,D

N jd) /N= g f „exp 2mi exp(i&J. )dx

= g exp 2ni(j —
—,
'

) exp(igj )
j=1

di /2N . xyX exp 2~i x
1

sin(n. d, y /NAD )

ny /A, D

N d&y
X g exp 2~i(j —

—,') +i/)
] D

Thus the diffraction pattern is seen to be the product of a
wide sin(x )/x slit function with a width corresponding to
the block size, multiplied by a complex "random-phase
sum" over the block phases P&. This random-phase sum
modulates the amplitude within the envelope of the block
slit function, thereby providing the two length scales seen
in our speckle patterns: the width of the fine structure (in-
dividual speckles) arises from the size of the beam; the
envelope width comes from the size of the coherently
scattering blocks; the penetration depth and overall
depth of the sample are too small to contribute.

The screen in the discussion above is, of course, the po-
sition of our back pinhole (see Fig. 1), or of a film or
position-sensitive detector in other experiments. Thus
the observed intensity through this second pinhole is just
the square modulus of Eq. (1) convolved with a box func-
tion with the size of the pinhole. In our case the back
pinhole was dz =20 pm at a distance of D =1.3 m; this is
sufFiciently small that the convolution represents only a
correction to the widths. The square modulus of Eq. (1)
was therefore used to compare directly with the data.

V. FI'l I'ING PROCEDURE

We found it was necessary to devise a special fit pro-
cedure to avoid the dangers of multiple local minima in-
herent in fitting a function with as many free parameters
as Eq. (1). While the dimensional parameters were
known and the number of blocks, X, could reasonably be
estimated as above, we have no a priori information about
the phases P . We therefore alternated cycles of least-
squares refinement (Marquardt algorithm" ) with cycles
of y searches. Both systematic mesh searches and ran-
dom (Monte Carlo) searches were employed. The
searches were limited to just the phases, while the least-
squares refinement was applied to the phases and five ad-
ditional parameters: a constant background level, a back-
ground slope, a peak center position, a scale factor, and
an overall peak width. The alternation was found to be
useful because the five additional parameters coupled
somewhat to the choice of best phases. The entire pro-



9922 I. K. ROBINSON et aI. 52

cedure was repeated a sufficient number of times that the
same local solution was generated more than once. We
could therefore be reasonably certain that we had ex-
hausted all phase possibilities and obtained the global
minimum of y .

The discrete parameter X was also varied systematical-
ly, and lower y values (g around 30) were found for
N =8 than for N (8 or N =9. As expected, the number
of peaks in the central maximum (the number of speckles)
was found to be approximately equal to N (the number of
independent blocks). Equation (1) can be seen to be iden-
tically zero when y=NA, D/d& (or multiples thereof),
when the wide slit function passes through its nodes.
Since the width of each speckle peak is fixed by the in-
verse of the front pinhole size, d„ the criterion for the
best value of 1V was found to correspond to locating the
nodes at suitable low points in the data.

Examples of fits obtained in this way are shown passing
through both sets of data in Fig. 4. During searching,
the phase values were restricted to the range—m. (P & n. The main peak positions, heights, and
widths are fitted fairly well, but some smaller features are
missed (see below). One reason for this imperfection is
the discrete nature of the model, assuming exactly X
equal-area blocks. In an attempt to further improve the
fits, the individual block sizes were then allowed to vary
by using a more general expression than Eq. (1) with N
variable width blocks. Predictably, the addition of X—1

additional parameters permitted a better fit, reducing y a
further 30%%uo. However, we did not pursue ab initio fitting
with this generalized model exhaustively and only used it
to improve existing results. The solutions were therefore
nearby in parameter space, and generated the dashed
curves in Fig. 4. It is important to emphasize that both
sets of data in Fig. 4, corresponding to two different posi-
tions on the sample, are fitted by the same model with
different parameter values.

The best-fitting phases structures are shown pictorially
for uniform block width in Fig. 6(a) and variable block
width in Fig. 6(b). The maximum total phase excursion
of +m corresponds to a total height variation in the posi-
tions of the diffracting planes of one superlattice period,
or 38 A, and is indicated by dashed boundaries in Fig. 6.
It should be noted that this is an artificial limitation, as
Eq. (1) is inherently insensitive to phase shifts of multi-
ples of 2~. Since large phase jumps in the picture are
equivalent to small jumps to values outside the +m
boundary, the pictures have been drawn in a way (not
unique) that minimizes the number of big jumps, to yield
the smoothest-looking phase structures, but ones which
have an overall phase variation somewhat greater than
2m. . Also, more than one solution for the phases were
found occasionally to be indistinguishable by their y
values; closer examination typically showed a simple rela-
tion between the solutions, such as a reversal or mirror
image of the phase sequence. The phase outcomes in Fig.
6 also appear to have some internal structure that is
different from random: three consecutive phases are al-
most identical for the first sample position. This tells us
that a single large block could have replaced three of the

First Position Second position
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—77
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(e)

POSITION ACROSS BEAM [Fraction of INidth]

FIG. 6. Sketches of the linear N-phase structures which give
the best-fit curves in Figs. 4 and 7 below. The ordinate is the
relative phase of each block while the abscissa shows the spatial
position of the blocks as fractions of the lateral dimension of the
beam (extending over 500 pm of the sample). During
refinement, the phase values were started in the range
—m&P &m., but are indistinguishable from the values P+2~n
The phases have then been adjusted, modulo 2~, to take the
value closest to their neighbors, but occasionally the choice is
ambiguous. The phase of each block may be considered to be
the relative height in the sample of the di6'racting layers, on a

0
scale where 2m corresponds to 38 A (one superlattice period).
Left and right panels represent the two positions measured on
the sample. (a) The eight-phase fit to Fig. 4 (solid curve), using
fixed block sizes. (b) The eight-phase fit to Fig. 4 (dashed
curve), when the block sizes are then allowed to vary starting
from the values in (a). (c) Best fits using the parameter search
method with 17 phases (left) and 15 phases (right). These corre-
spond to the dashed curve of Fig. 7 below. (d) and (e) Examples
of fits with 17 phases using the "annealing" method. These cor-
respond to the solid curves of Fig. 7.

uniform-sized blocks in the model, so a variable-block-
size model might be a more effective use of parameters in
the general case.

Closer examination of the fits in Fig. 4 points to a more
serious inadequacy of this model. There is a factor-of-2
discrepancy between the fitted values of the peak widths,
A,D/d, in Eq. (1), and the values expected from the
geometry. The fits give values of 49 and 62 JMm for the
two sample positions, but something like 28 pm (1.05
AX1.3 m)/(7 IMm) convolved with 20 IMm] is expected.
As noted above, the observed widths of the speckles in
the data do indeed correspond to that observed for the
Fraunhofer central maximum, so the problem must lie
with the fit function.

The discrepancy can be resolved by close examination
of the form of the function in Eq. (1). When all the
phases are equal, Eq. (1) becomes the ideal 1D
Fraunhofer diffraction curve, which is a simple slit func-
tion, [sin(x)/x], where x =md &y /AD; this has a central
maximum with a node-to-node width in y of 2A,D/d, and
side fringes of width AD/d&. When the phases are al-
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lowed to vary, some side fringes become taller and the
central one smaller until the identity of the original
"center" is no longer distinct. The nodes become redis-
tributed along the axis, so the node-to-node spacing be-
comes intermediate between A,D/d, and 2A,D /d„with
the taller peaks having greater widths than the smaller
ones. When many peaks of equal size are caused to ap-
pear, their widths are closer to A,D/d, than 2A,D/d, . We
fitted the data with N=8 phases because we identified
about this number of speckles in the pattern. This as-
sumed that every maximum in the fit function was a
speckle peak, so the fitted value of the width was forced
to enlarge to compensate.

If we now reassess the counting of speckles to admit
that there are small peaks in amongst the big ones, the
problem will be resolved. Close examination of the data
shows there are indeed some small inAections between the
major peaks as well as some shoulderlike features; these
should all be counted as speckles as well. It may be more
accurate to estimate the number of speckles as the num-
ber of nodes in the data rather than the number of big
peaks. We therefore investigated fitting the data with
N-16 instead of N=8.

Unfortunately, with N-16 the parameter is too large
to handle by the parameter-search methods used before.
In attempts to solve phase problems in crystallography, it
is widely believed that to "guess" a structure, it is neces-
sary to try at least four quadrature values for each phase
degree of freedom. ' The number of guesses for an N-
phase structure is therefore 4 '. This is tolerable
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FIG. 7. Improved fits to the data of Fig. 4 using a greater
number of phases. As no global best fit was obtained, several
"good" examples are superimposed. All fits shown had a lower
chisquare than the fits in Fig. 4. The dashed fit curve corre-
sponds to structure (c) in Fig. 6, using the random-search
method. The solid fit curves correspond to structures (d) and (e)
in Fig. 6, using the "annealing" algorithm. (a) 17-phase exam-
ples with fitted A,D/d widths of 35.0, 33.0, and 32.7 pm. (b) 17-
phase and 15-phase examples with fitted A,D jd widths of 39.9,
38.1, and 37.4 pm.

(16000) when N =8 but unrealistically large (10 ) when
X becomes 16. In spite of these tall odds, we attempted
to fit the data by random parameter searching with a
larger number of phases (N=16 or 17) and found satis-
factory results after -2X 10 attempts. The best exam-
ples are shown in line (c) of Fig. 6, where the agreement
with the data is substantially improved over Fig. 4. The
dashed fit curves in Fig. 7 now have in6ections between
the large speckle peaks because smaller peaks have been
introduced there, as expected. The resulting values of
AD/d& obtained by fitting, 32.7 and 37.4 pm, are now
much more reasonable. Of course, we cannot claim these
are global best fits because we did not sample enough
starting phase combinations; they serve as examples of
fits that are improved by using more phases, and which
have resolved the discrepancy in the widths.

We tried one additional method for arriving at large-X
phase solutions for these speckle patterns. Noting that
the solutions even with N =8 tend to have groups of adja-
cent phases close to the same value, we might make an
"educated" guess that, if an additional phase were added
to an existing structure, it would be more likely equal to
its neighbor's phase than opposite. This suggests a recur-
sive method to extend a structure with N phases to one
with %+1. If we start from an existing fit with N phases
(on equal-sized blocks), we can compress the blocks into a
new structure with X blocks each reduced in length by
N/(N +1), and add one new phase at the end with an in-
itial value equal to its predecessor in the sequence. Be-
cause perturbations of the values of adjacent phases are
correlated during least-squares refinement, the optimiza-
tion by fitting this new structure with the data will ac-
commodate the new phase and lead to a new best fit. We
consider the least-squares fitting to be analogous to "an-
nealing" the phase array after each addition of a new
phase.

This "annealing" method was found to be much more
effective than random searching for producing good fits
to the data when we need large numbers of phases. Using
one-tenth the total expenditure of computer time, half a
dozen fits were found with better least-squares residuals.
Two X= 17 examples, each extended from 1V =5 starting
structures, for each sample position are shown on lines
(d) and (e) of Fig. 6, and as solid theory curves in Fig. 7.
One again, the fitted width values are much more reason-
able than for X=8, and agree roughly with the values ex-
pected from the geometry. The ultimate outcome was
found to depend on the exact choice of starting structure,
the constraints applied on the range of parameters, and
the number of refinement cycles carried out at each phase
addition. As before, it is not possible to say whether
these fits are anywhere close to the global minimum, but
the qualitative agreement with the data in Fig. 7 can cer-
tainly be claimed to be good.

It is clear that the various examples of fits in the
different lines of Fig. 6, thought not identical, are closely
related to each other. It should be remembered that left-
right and up-down mirror images give identical fits, and
the choice of which one is generated is arbitrary, due to
the random factors involved in initiating the fit pro-
cedure. The structures are all characterized by regions of
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roughly constant or slowly varying phase followed by
sudden jumps. The jump positions are located faithfully
in every fit. These must correspond to locations of
growth defects in the multilayers, and may arise from in-
stabilities such as step bunching during growth. '

VI. CONCLUSIONS

Several signiAcant conclusions about the understanding
of speckle patterns have arisen from this study. First,
even when a symmetric beam is used, strongly anisotrop-
ic speckle can result from the use of a grazing geometry.
Secondly, when the penetration depth is so much smaller
than the lateral dimensions of the coherently diffracting
domains, the vertical structure of the sample becomes
unimportant, because its effects become smeared out by
the Anite-size broadening due to the limited penetration.
The relevant phase of the domain is then determined only
by the relative position of the diffracting planes at the
surface. Thirdly, the Ane details of the speckle patterns
observed can be understood by a "random-phase model, "
and, Anally, two practical methods of solving for the
values of a limited set of phases have been demonstrated.

We do not believe this is necessarily a unique descrip-
tion of speckle, but instead a working model that embo-
dies some of its important characteristics. It invites fur-
ther testing of more powerful ways of gaining informa-
tion about the microscopic arrangement of domains
within a small region of a sample. For example, if two
speckle patterns were recorded before and after a sample
displacement by less than the size of the beam's footprint,
they would be related in a way that might allow phasing
of the peripheral material. A sequence of difference mea-
surements might then allow a complete phase map to be
generated experimentally.

We note in closing that the coherent-diffraction tech-

nique described here may have some utility in nondes-
tructive roughness evaluation of semiconductor materials
on an important length scale. The method may be
thought of as an extension of the traditional (i.e., in-
coherent) difFuse-scattering method, which probes the
same length scales, but would see only an average broad
distribution instead of the highly modulated pattern of
Fig. 4. The use of coherent x rays therefore allows
higher-order moments of the roughness to be perceived in
addition. In this sense, coherent diffraction combines
characteristics of both scattering and imaging techniques.
The typical distances probed are also accessible to optical
interferometry, scanning probe microscopics [scanning
tunneling microscopy (STM) and atomic force microsco-
py (AFM)] or scanning electron microscopy (SEM). The
coherent-difFraction method differs from all of these oth-
ers, however, in that it probes the lateral variation in
height of a diffracting layer inside the materia/, which is
not necessarily related to its surface. In the case of a
semiconductor heterostructure device, for example, used
as a quantum well, it is the roughness of the interfaces
that determine the electron scattering, and hence mobili-
ty, and this is precisely the roughness to which the
diffraction method is sensitive.
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