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Extended Mie-Griineisen theory applied to C60 in the disordered fcc phase
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The large difference between the interatomic forces within a C«molecule and the intermolecular

forces allows the intermolecular contributions to thermodynamic properties to be treated by a simple

pairwise central force theory when the molecules are freely rotating. This circumstance was utilized to

compute the intermolecular contribution to the properties of the disordered phase. The anharmonicity

was treated by an extension of Mie-Griineisen theory in which the Gruneisen constant was replaced by a

Griineisen parameter calculated as a function of volume from the intermo1ecular potential. The equa-

tion of state, compressibility, and coefticient of thermal expansion, as well as the ratio of the constant

pressure to constant-volume heat capacity were computed in the quasiharmonic approximation using the

ca1culated Griineisen parameter. The agreement with experiment was satisfactory on a11 counts.

I. INTRGDUICTIGN

The harmonic approximation for thermal vibrations in
sohds cannot account for the thermal expansion or for
the temperature dependences of the equation of state and
compressibility. A formal representation of these anhar-
monic properties is embodied in the Mie-Gruneisen
theory by assuming that at every temperature the har-
monic approximation is adequate, but that the magnitude
of the vibration frequencies varies with the crystal
volume. ' This dependence is represented by the
Gruneisen parameter y which is de6ned by

d lnvJ

where V is the volume and v. are the normal-mode fre-J
quencies.

This is the quasiharmonic approximation. It only par-
tially accounts for the vibrational anharmonicity since it
still uses the harmonic oscillator energy levels in the crys-
tal partition function. y is normally taken to be a con-
stant that is independent of volume and is the same for all
the normal-mode vibrations v. , although it is well recog-
nized that the variation of frequency with volume is
different for different modes. y is usually calculated from
experimental thermodynamic data and the Mie-
Griineisen approach is thus almost completely empirical.

In this paper, it is pointed out that if the crystal energy
is known as a function of lattice parameter, the
Griineisen parameter can be calculated explicitly as a
function of volume. This is particularly simple for crys-
tals in which the pair-wise central force approximation is
valid. The Mie-Griineisen approach can then be extend-
ed in the sense that the Gruneisen parameter is obtained
from the crystal energy rather than from empirical ther-
modynamic data, and it is not necessarily independent of

volume.
An interesting application of this method is to the

face-centered-cubic phase of C60. In the molecule, the
atoms are held together by strong chemical bonds while
the interactions among these molecules in the fcc solid
arise primarily from van der %'aals-type forces and are
much weaker. To a good approximation therefore, the
thermal properties of fcc C60 can be treated as the sum of
those resulting from intermolecular vibrations and those
arising from intramolecular vibrations. In addition, there
are molecular rotational and librational modes. Howev-
er, these modes are completely excited in the fcc phase
and for purposes of computing the thermal expansion
and compressibility the molecules can be thought of as
freely rotating with a negligible contribution to these
quantities. These modes certainly contribute to the heat
capacity but not to the ratio of the heat capacity at con-
stant pressure to that at constant volume, which is deter-
mined by the thermal expansion and compressibility. In
computing the anharmonic crystal properties, therefore,
it is sufhcient to consider only the intermolecular vibra-
tional modes.

An intermolecular potential is known that treats the
C60 molecule as a "pseudoatom" by computing a spheri-
cally averaged intermolecular potential. This has had
some success in the computation of molecular properties
of fcc C60. Using this potential, it is possible to get y as a
function of volume and to then compute the intermolecu-
lar contributions to the equation of state, the thermal ex-
pansion, and the temperature dependence of the compres-
sibility. For pressures that are not too high, the in-
tramolecular contributions should be quite small. Calcu-
lations of the intermolecular contributions are reported
in this paper.

The difference between the heat capacities at constant
volume and constant pressure is also an anharmonic
effect. The measured heat capacity, however, has impor-
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II. THEORY OF ANHARMONIC THERMODYNAMIC
PROPERTIES

Starting with the harmonic crystal expression for the
Helmholtz free energy and the standard thermodynamic
relations for its connection to the pressure P, volume
coefficient of thermal expansion o;, and compressibility ~,
and using (1) for the derivatives of the frequencies with
respect to volume, gives
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BV V th (2)
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Uo is the energy of the crystal when a11 atoms are at their
mean equilibrium positions, E, is the zero-point vibra-
tional energy, and Eth is the thermal energy defined by
Eth U Up U ~ U being the total energy. C, is the
heat capacity at constant volume and T is the absolute
temperature. It must be stressed that the heat capacity
and thermal energy do not include the contributions from
the intramolecular vibrations so that the high-
temperature limits of these quantities are 3k and 3kT per
molecule, respectively.

Within the expected accuracy of the theory, the Debye
theory can be used to compute the vibrational contribu-
tions to the above equations. The current work is re-
stricted to temperatures above 300 K so that, since the
Debye temperature, eD, of fcc C6O is 73 K, the thermal
energy and the heat capacity are given by the classical re-
sults of 3NkT and 3%k, respectively, k being Boltzmann's
constant and X being the number of molecules. From
Debye-Gruneisen theory, the zero-point energy and its
derivatives are given by

E,p =—Xke~,9
(6)
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tant contributions from both the inter- and intramolecu-
lar vibrations. In fact, because there are 180 degrees of
freedom per molecule and only three vibrational and
three rotational modes, the intramolecular contribution
dominates the heat capacity except at low temperatures.
It is nevertheless of interest to examine the intermolecu-
lar contribution.

In the usual Mie-Gruneisen theory, the derivative of the
Gruneisen parameter with respect to volume does not ap-
pear because it is assumed to be zero. Also, the
Cxruneisen parameter is normally obtained from Eq. (4)
using experimentally determined values of the heat capa-
city, the compressibility, and the coefficient of volume ex-
pansion. Here, however, we compute the Gruneisen pa-
rameter by assuming that the vibration frequencies are
proportional to the square root of the second derivative
of the intermolecular potential.

III. INTERMOLECULAR POTENTIAL
AND GRUNEISKN PARAMETER

The potential energy of interaction between two freely
rotating C6o molecules has been approximated by treating
each molecule as if it were a sphere with a surface con-
sisting of a uniform density of carbon atoms. The equa-
tion for this potential is

P(r) =a 1

s (s —1)
1 2

s(s+1) s

IV. RESULTS AND COMPARISON WITH EXPERIMENT:
GRUNKISKN PARAMETER

The Gruneisen parameter was computed analytically
by obtaining the second and third derivatives from Eq. (9)

s(s —1) s(s+1) s'o

r is the distance between the centers of the two C6O mole-
cules and s = r !2a, a being the radius of a C6O molecule.
The attractive and repulsive constants were obtained by
fitting the potential to the heat of sublimation and the lat-
tice constant of C6o. They have the values
a=74.94X10 ' erg and P= 135.95X10 ' erg and
2a =7.1X10 8 cm.

In the harmonic approximation, the normal-mode fre-
quencies are determined by the second derivative of the
static crystal energy as a function of atomic displace-
ment. In keeping with the Griineisen approach, we as-
sume this to also be true in the quasiharmonic approxi-
mation. For C60, the intermolecular potential has a very
short range and the bulk of the crystal energy is account-
ed for by nearest-neighbor interactions. Accordingly, we
assume that the frequencies are proportional to the
square root of the second derivative of the interaction po-
tential, evaluated at the nearest-neighbor interm. olecular
spacing A, . From Eq. (1) the Griineisen parameter is then
given by

d in'"'
(10)

6d in',

t}t' ' and P' ' being the second and third derivatives of
P(r) evaluated at A, . Equation (10) shows that the
Gruneisen parameter is not a constant even in the
nearest-neighbor quasiharmonic approximation. The
derivatives of P(r) are readily evaluated from (9) so that
the Gruneisen parameter can be obtained as a function of
nearest-neighbor distance and therefore of volume.
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to put into Eq. (10). Figure 1 displays the Gruneisen pa-
rameter as a function of V/Vo, Vo being the volume at
zero pressure, and shows that y is not constant. At zero
pressure, y=9. 15. This is high compared to Gruneisen
parameters for metals and rejects the facts that the
thermal expansion is high and that our y refers only to
intermolecular interactions.

Some inferences concerning experimentally obtained
Gruneisen parameters can now be drawn. Because the
inter- and intramolecular modes arise from very different
kinds of forces, the Gruneisen method can be applied to
each set of modes separately but not to both sets simul-
taneously. Lundin et al'. measured a constant pressure
heat capacity of 0.73 J/g K at room temperature and
derive a Griineisen parameter of 1.4. But this is not very
informative since the major contributions to the thermal
expansion and to the compressibility are from the inter-
molecular vibrations, while the major contribution to the
heat capacity is from the intramolecular modes. There
are, of course, three different Gruneisen parameters, one
each for intramolecular vibrational, librational, and inter-
molecular vibrational modes. The experimental data
used in the calculation of the Gruneisen parameter must
first be separated into these contributions. Sundqvist
amended the calculation of the Gruneisen constant to
take this into account and obtained a value of 9.8 at zero
pressure (for the Griineisen parameter corresponding to
the intermolecular vibrations).

Calculations of the Gruneisen parameters from experi-
mental data for the ordered phase (200 K and below)
have recently been performed by %'hite et al. in three
ways corresponding to including all, vibrational and li-
brational, and vibrational only modes. The calculation

using only the vibrational modes gave a Gruneisen pa-
rameter of 10 at 200 K for the sc phase, which is close to
our value for the fcc phase. The excellent agreement of
the experimental values with our theory is probably for-
tuitous since the experimental values were computed us-
ing compressibilities that were much larger than that in
the theory.

V. RESULTS AND COMPARISON WITH EXPERIMENT:
THERMODYNAMIC PROPERTIES

With the computed values of y( V), the equation of
state is readily obtained from Eq. (2) using the classical
values for the thermal energy and the Debye-Gruneisen
value for the zero-point energy contribution. A value of
8D =73 K was used (this diff'ers from the value previously
reported by a factor of m which was inadvertently left out
of the previous calculation ). This value of the Debye
temperature was obtained from a simple lattice-dynamics
calculation using the potential of Eq. (9) and is therefore
consistent with our other calculations. The derivative of
the energy of the static lattice was obtained by computing
Uo from a lattice sum of the intermolecular potential out
to fifth-nearest neighbors and then differentiating. The
results are shown in Fig. 2. As expected, the static term
dominates at high pressures, but the vibrational terms be-
come important at low pressures because, while the vi-
brational terms vary slowly with volume, the static term
is very small at zero pressure. A point to note is that
when the thermal contributions are taken into account,
the equilibrium nearest-neighbor distance is computed to
be 10.09 A instead of the static lattice value of 10.05 A.
It would be interesting to recompute the intermolecular
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potential function from the requirement that the total en-
ergy is minimized instead of just the static energy, but the
experimental data are not accurate enough to make this a
meaningful calculation.

A comparison of the calculated P-V relation to the
data of Ludwig et al. at 336 K is shown in Fig. 3. Their
measurements spanned the rotationally disordered fcc
phase and the ordered sc phase and only their low-
pressure results are included in Fig. 3. The calculated
curve is an estimate of the P-V relation for an fcc phase
that is fictitious above several thousand atmospheres.
The agreement between theory and experiment is excel-
lent in the pressure range corresponding to the fcc phase.

The calculated compressibility at 300 K and zero pres-
sure is shown as a function of temperature in Fig. 4 and is
approximately linear from room temperature to 1500 K.
The calculated bulk modulus at absolute zero is
1.55 X 10" dyn/cm whereas an earlier calculation gave
1.58 X 10" dyn/cm . The difference between the two re-
sults is the result of the greater accuracy of the present
calculation which took more neighbors into account. At
300 K the bulk modulus is 1.193X10" dyn/cm . The
calculated compressibility at 300 K is 8.373 X 10
cm /dyn.

The relatively large variation with temperature shown
in Fig. 4 is the result of the large value of the Griineisen
parameter. The direct contribution of the vibrational
terms to this variation is less than 2% but the thermal ex-
pansion of the lattice has a large effect on the second
derivative of the static lattice energy and this is responsi-
ble for the large temperature effect.

A recent calculation of the compressibility by Burgos,
Halac, and Bonadeo yielded a room-temperature
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FIG. 4. Calculated compressibility as a function of tempera-
ture for C60.

compressibility of 7.6X10 ' cm /dyn for the fcc phase.
They used a Buckingham-type potential plus electrostatic
interactions placed at double bonds and at the centers or
pentagon faces. However, their calculation of the
compressibility of the fcc rotating phase was based on a
spherical average of the Buckingham potential alone.
The electrostatic contribution to the spherical average is
therefore zero and their method is directly comparable to
ours. The agreement with our calculation is remarkably
close considering that they did not obtain the parameters
in the potential by fitting them to C6O data, but used pa-
rameters obtained for molecular hydrocarbon crystals.
La Rocca' computed the compressibility of the fcc phase
using a density-functional statistical method and obtained
a value of 8.33X10 ' dyn/cm, in excellent agreement
with the present results.

Lu, Li, and Martin" computed a compressibility of
5. 18X10 '2 dyn/cm for the ground state of C60 using
Lennard-Jones potentials centered on each carbon atom
plus electrostatic contributions. While not directly corn-
parable to our work, their result is surprisingly close to
ours. A comparison to the available data and theory is
shown in Table I.

The result of Fischer et aI. ' is close to our value.
However, their compressibility was computed from just
one data point at a high pressure and is therefore an aver-
age over a large range of pressure and over the ordered as
well as the disordered phases of C60. This measurement
is therefore not directly comparable to the present model
and the agreement is fortuitous.

The agreement between the calculations and the value
of Duclos et al. ' is good, but their result was an extrapo-
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TABLE I. Experimental and calculated compressibility of
C6o in units of 10 ' cm /dyn.

Reference

6
7
8
13
12
9
10
11
Present work

Experimental

7.46
8.3

14.7
5.5
7

Theoretical

7.6
8.33
5.18
8.373

lation from the sc phase. The theory agrees best with the
neutron-difFraction results of Schirber et al. and differs
by about 12% from the x-ray-diff'raction results of
I.udwig et al.'

The calculations state that C6o is harder than indicated
by the results of Lundin and Sundqvist. In fact, their ex-
periments yield compressibilities that are significantly
greater than those of other work or of the present calcu-
lations.

The errors in the theory of the compressibility can
arise from the following sources:

(1) Calculation of the thermal contribution to the bulk
modulus;

(2) The functional form of the C-C interaction poten-
tial;

(3) The constants in the interaction potential;
(4} The use of spherical averages over the surface of in-

teracting molecules.
The thermal contribution amounts to less than 10% and
cannot be in error enough to matter. It is true that the
functional form of the carbon-carbon potential is empiri-
cal, but only its values near the equilibrium lattice con-
stant are relevant to the calculation and these are deter-
mined by well-known experimental data. The same con-
sideration holds for possible errors in the constants of the
interaction potential. Also, the carbon-carbon potential
function is of the same form as for graphite and has con-
stants with similar values. The fact that the same kind of
calculation gives quite good results for graphite indicates
that the results for C6O should be equally reliable. The
approximation of spherical averaging which was used to
derive the potential given by Eq. (13}might be suspect,
but a recent calculation of graphite properties using a
similar continuum approximation' yields results that are
very close to those computed on the basis of the correct
distribution of discrete atoms. ' Another calculation that
shows the utility of the spherically averaged approxima-
tion has been carried out by Rey, Gallego, and Alonso. '

These authors performed a molecular-dynamics study on
the stability of C60 clusters using the spherically averaged
potential and found that clusters containing 7, 13, 18, and.
22 molecules were particularly stable. This compared
well with the results of Martin et al. ' who found abun-
dance peaks in mass spectroscopy experiments at cluster
sizes of 7, 13, 19, and 23. Also, the measured compressi-
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bility of graphite is 2.7X10 ' cm /dyn. ' Since practi-
cally all the volume change is the result of compression in
the c direction, this number must be multiplied by three
for comparison to the compressibility of C6O. The result-
ing 8. 1X10 ' dyn/cm is close to our calculated value
and lends further support to the validity of the calcula-
tion, provided that the assumption of complete rotational
disorder is valid. These theoretical considerations, along
with the reasonable agreement of the theory with experi-
ment, indicate that our spherically averaged potential is
adequate for the fcc phase.

The calculated thermal-expansion coe%cient is shown
in Fig. 5. The rather large increase by 1/6th from room
temperature to 1500 K is again the result of a large
Gruneisen parameter. A comparison with experiment is
shown in Fig. 6 in which the calculated lattice parameter
of fcc C6o is shown along with the data from Fischer and
Heiney. ' The experimental value of 1.63X10 for the
linear coeKcient of thermal expansion is in satisfactory
agreement with the calculated value of 1.44 X 10

The agreement of the calculated thermal-expansion
coescient with experiment, the similarity in both
theoretical and experimental results for graphite and the
success of other calculations based on continuum averag-
ing of the potential makes the results of Lundin and
Sundqvist hard to understand. It is true that even at
room temperature and zero pressure the degree of orien-
tational order amounts to 16% (Refs. 20 and 21) and that
this increases with increasing pressure. The calculated
compressibility and equation of state is for a fully disor-
dered system, which is not realized under the conditions
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of the measurements of Lundin and Sundqvist. But if ad-
jacent molecules are rotationally ordered, there are two
sources of error in the present calculations. The first is
that the use of spherically averaged potentials is in-
correct; the second is that the form of the potential may
need to be modified to include an effect arising from the
interactions of the localized orbitals on the molecules.
The thermal-expansion measurements, on the other hand,
more closely correspond to the model calculations since
they extend to high temperatures and the degree of rota-
tional order should decrease with increasing temperature.
The angular variation of the potential could be quite
large. A collection of data from several sources gives an
activation energy of rotation of 0.3 eV, ' which is approx-
imately equal to the well depth of the spherically aver-
aged potential. This potential can therefore be in serious
error when applied to an orientationally ordered phase.

However, Lundin and Sundqvist report a compressibil-
ity for the ordered phase that differs by less than 20%
from that of the disordered phase. This is not consistent
with a factor of 2 difference between the potentials in the
two phases. Both the theoretical analysis and the experi-
mental diffraction results lead to the conclusion that the
lower values of the compressibility are to be preferred.

The calculated ratio of the constant pressure to
constant-volume heat capacity for the intermolecular vi-
brational modes is shown in Fig. 7. Again, the anhar-
monic effect is large. Even at room temperature the two
heat capacities differ by 11% and this approaches 70% at
high temperatures. This is the direct result of the large
value of the Griineisen parameter computed from the in-

termolecular C6p potential. This potential is quite narrow
so that a small change in crystal volume yields a large
change in vibration frequencies thereby giving a large
Griineisen parameter. These results were used to sub-
tract out the intermolecular contribution to measured
values of the heat capacity. It was found that at room
temperature the intramolecular contribution was 20
times that from the intermolecular vibrations.

VI. CONCLUSIONS

The intermolecular contribution to the thermodynamic
properties of C6p in the disordered C6p phase can be com-
puted from a model potential which assumes that the
molecules interact according to a potential obtained from
an average over spherical surfaces of a Lennard-Jones po-
tential between individual carbon atoms on different mol-
ecules. The potential permits the Gruneisen parameter to
be computed as a function of volume so that the anhar-
monic thermodynamic properties can be obtained from
standard statistical mechanics within the quasiharmonic
approximation. The calculations are compatible with ex-
periment and a number of theoretical considerations indi-
cate that the calculations are valid for the disordered fcc
phase.
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